
8-bit
RISC
Microcontroller

Application
Note

Rev. 1644D–AVR–1/03
AVR109: Self-programming

Features
• AVR109 Code Fits in All AVR® Microcontrollers with Boot Block
• Read and Write Both Flash and EEPROM Memories
• Uses the AVRProg Protocol
• Read and Write Lock Bits

Introduction
This application note describes how an AVR with the Store Program Memory (SPM)
instruction can be configured for Self-programming. The AVR communicates via the
UART with a PC running the AVRprog programming software. This enables Flash and
EEPROM programming without the need for an external programmer.

A Boot Loader program is placed inside the Boot Section of the Flash memory. This
program handles communication with the host PC, and facilitates programming of
both Flash and EEPROM. Once programmed, different levels of protection can be
individually applied to both the boot and application portion of the Flash memory. The
AVR thus offers a unique flexibility, allowing the user extensive degrees of memory
protection.

SPM Explained
To get a better understanding of the AVRs’ Self-programming capabilities, the basics
of this feature are explained below.

Memory Organization
The Flash memory is divided into two sections, one Application section and one Boot
Loader section. The Application section contains the main code for the application,
while the Boot Loader section contains the code for the actual Self-programming. The
SPM instruction can only be executed from the Boot Loader section. (Note: The Boot
Loader section can also be used for ordinary application code.)

The Flash memory is divided into pages containing 32, 64, or 128 words each. The
usage of pages is explained later. The entire memory span, both Application and Boot
Loader sections, is divided into pages. For instance, a device with 8 kbytes of Flash
and page size of 32 words (64 bytes) will therefore have a total of 128 pages. The
memory organization is shown in Figure 1.
1

Figure 1. Memory Organization

The size of the Boot Loader section can be selected using the two BOOTSZx Fuses.
The fuses select one of four predefined sizes. The BOOTSZx Fuses can be changed
using Serial or Parallel Programming. Refer to the devices' data sheet for details.

If a Boot Loader is implemented, it can be called either directly from the Application code
using calls or jumps, or by programming the BOOTRST Fuse. When the BOOTRST
Fuse is programmed, the CPU will start execution in the Boot Loader section on Reset,
instead of starting at address 0. The BOOTRST Fuse can be changed using Serial or
Parallel Programming.

Read-While-Write
Capabilities

In addition to the selectable division between the application and Boot Loader sections,
the Flash is also divided into two fixed-size sections. The first section is the Read-While-
Write (RWW) section. The second is the No-Read-While-Write (NRWW) section. The
NRWW section size always equals the largest selectable Boot Loader section size, thus
the Boot Loader section occupies all or part of the NRWW section. This is illustrated in
Figure 2.

Figure 2. RWW and NRWW Sections

The difference between the sections is that the NRWW section is accessible while
updating the RWW section. It is not possible to access the RWW section when it’s being
updated. When the NRWW is updated (e.g., updating the Boot Loader code itself), the

Application Section

Boot Loader Section

Flash Memory

Page 13

Page 14

Page 15

Page 16

32, 64 or 128
Words

RWW Section

NRWW Section

Flash Memory

Boot Loader Alternatives
2 AVR109
1644D–AVR–1/03

AVR109
CPU is halted during the whole operation. In other words, No-Read-While-Writing to the
NRWW section, but possible to Read-While-Writing to the RWW section. Refer to the
devices’ data sheet for details.

This functionality makes it possible to continue execution of critical code while updating
the RWW section. Note that this critical code must be contained within the NRWW sec-
tion (not necessarily in the Boot Loader section). See the section on interrupts below for
more information.

The ATmega163 and ATmega323 devices don’t have NRWW and RWW sections, only
the selectable division into application and Boot Loader sections. Any updates to Flash
memory on these devices halt the CPU during the whole operation.

Using the SPM
Instruction

All Self-programming operations are performed using the SPM instruction. The opera-
tion is selected using the SPMCR Register. The register is organized as shown in Figure
3.

Figure 3. The SPMCR Register

When using the SPM function, the SPMEN bit must always be set within four cycles
prior to executing the SPM instruction. This is to prevent unintentional Flash updates.
The software must ensure that no interrupt routines are called between setting the
SPMEN bit and executing the SPM instruction, thus exceeding the 4-cycle limit. The
other four highlighted bits choose between the different SPM functions. The SPMEN bit
is automatically cleared together with the function bit when the operation is completed.

The SPM functions are described below.

Page Erase All Flash memory updates are done page by page. Before writing new data to a page,
the page must be erased.

The Z-register is used to select the page to be erased. Set up the Z-register to point to a
byte in the page to be erased. The lower bits selecting the byte within the page are
ignored. For instance, on a device with a page size of 32 words (64 bytes), the lower six
bits of the Z-register are ignored.

To erase a page, set the PGERS and SPMEN bits in the SPMCR Register and execute
the SPM instruction.

SPMIE RWWSB - RWWSRE BLBSET PGWRT PGERS SPMEN

Bit 0Bit 7
3
1644D–AVR–1/03

Loading Page Buffer To write new data to a page, the Page Buffer must be filled first. The Page Buffer is a
separate (not SRAM) write-only buffer holding one temporary page. This buffer must be
filled word by word. The buffer is copied to Flash memory in one operation.

The Z-register is used to select the word to be written into the buffer. The LSB of Z is
ignored, as an entire word is always written in one operation. Single byte access is thus
not possible. The higher bits of Z selecting the page are ignored when writing to the
Page Buffers. The Z-register bit structure for a 32-word (64-byte) page is shown in Fig-
ure 4. Larger page sizes use more bits for word selection.

Figure 4. Writing to Page Buffer

To write a word to the Page Buffer, load the word into the R1:R0 Registers. Set the Z-
register to point to the correct word and set only the SPMEN bit in the SPMCR Register.
The SPM instruction must then be executed within four cycles.

Page Write When the Page Buffer is loaded with new data, it must be written to Flash memory. To
do this, set up the Z-register the same way as described in the section regarding Page
Erase. Then set the PGERS and SPMEN bits in the SPMCR Register and execute the
SPM instruction within four cycles. The R1:R0 Register contents are ignored. The use of
the Z-register for 32-word (64-byte) page write is shown in Figure 5.

Figure 5. Writing a Page to Flash

1

2

29

30

0

31

32-word Page Buffer

B
it

0

Word Select
Z

B
it

1

B
it

5

B
it

6

Page 45

Page 46

Page 47

Flash Memory

1

2

29

30

0

31

32-word Page Buffer

B
it

0

Page Select
Z

B
it

1

B
it

5

B
it

6

4 AVR109
1644D–AVR–1/03

AVR109
The SPMEN bit can be polled to find out when the CPU is ready for further page
updates. The update procedure can also be interrupt controlled. See the section on
interrupts below for more information.

The RWW Section Busy Flag When performing a Page Erase or Page Write operation on the RWW section, the
RWWSB Flag is set by hardware, indicating that the section is inaccessible. The
RWWSB Flag should be cleared in software when the SPM operation is completed. This
is done by setting the RWWSRE and SPMEN bits in the SPMCR Register, followed by
an SPM instruction within four cycles. Alternatively, the flag is automatically cleared by
starting to load the Page Buffers. The RWWSB Flag can be used by other parts of the
application to check the RWW section’s current accessibility. Refer to the devices’ data
sheet for more details.

Note that the contents of the Z-register and the R1:R0 Registers are ignored when using
the RWWSRE function.

Note that if the RWW section accessed without re-enabling it after an erase or write
operation, all addresses in the RRW section read 0xFFFF. This applies both when read-
ing the Flash using LPM and if performing calls or jumps into the RWW section. The
consequence of performing a jump into the RWW section without enabling it will there-
fore be that the program code “0xFFFF” is executed, eventually leading to that the
program counter “falls” through the code space until it meets the first executable code.
The first executable code would in that case be encountered on the first address of the
NRWW section.

The Boot Lock Bits The application and Boot Loader section can be protected on different levels. There are
four levels of protection for both sections. A short description of the modes follows.

Note that once programmed (cleared), it is impossible to unprogram the bits again with-
out using serial or parallel programming. For instance, to implement an application that
is to be updated once, set Boot Lock mode 1 on the Application section, and mode 4 on
the Boot Loader section. This prevents the application from accessing the Boot Loader,
while giving the Boot Loader full access to update the application section. Once
updated, the Boot Loader would set mode 3 on the Application section, thus blocking all
further access.

To program the Boot Lock bits, load the R0 Register with the correct bits, set the BLB-
SET and SPMEN bits in the SPMCR Register and execute the SPM instruction within
four cycles. The contents of the Z-register are ignored.

Using the LPM instruction instead of the SPM instruction will read the bits.

Interrupt Considerations It is possible to use interrupts while writing to the RWW section, but the software must
prevent any other access to the RWW section. In other words, interrupt service routines

Table 1. Boot Lock Modes

Mode Bits Description

Mode 1 11 Full read/write access

Mode 2 10 No write access

Mode 3 00 No write access and no read access (data or interrupt execution) from the
other section.

Mode 4 01 No read access (data or interrupt execution) from the other section.
5
1644D–AVR–1/03

to be executed while updating the RWW section must be placed in the NRWW section,
including the Interrupt Vectors.

Using the IVSEL bit in the GICR Register, the application can be used to implement two
separate Interrupt Vector tables. One in the Application section, and one in the Boot
Loader section to be used when updating the RWW section. This enables the applica-
tion to continue critical processes, e.g., safety monitoring, during Self-programming.
Refer to the devices’ data sheet for more details on interrupts and the IVSEL Flag.

If the secondary Interrupt Vectors are not used, the interrupts must be disabled during
RWW section updates.

The SPM Interrupt On all devices supporting Self-programming, except the ATmega163 and ATmega323
devices, it is possible to control the Flash update operations using interrupts. Setting the
SPMIE bit in the SPMCR Register will enable the SPM ready interrupt. This can be used
to indicate when the current SPM operation is finished.

EEPROM Conflicts Note that all write operations to the EEPROM must be finished before executing the
SPM instruction and vice versa. Write/erase of the Flash and EEPROM cannot occur
simultaneously.

Typical Update
Procedures

Two common update procedures are shown in Figure 6. The flowchart to the left
describes a Read-Modify-Write operation used to update small parts of the Flash, e.g., a
constant string contained in Flash memory. The flowchart to the right describes a Page
Write operation used to write whole pages without reading previous contents, e.g., write
data received from an UART.
6 AVR109
1644D–AVR–1/03

AVR109
Figure 6. Typical Update Flowcharts

START

Read Page
Contents Into

SRAM

Read-Modify-Write

Erase Page

Update Data in
SRAM

Write Page

Reenable RWW
Section

END

START

Page Write

Erase Page

Get New Page
Contents, e.g. from

UART

Fill Page Buffers

Fill Page Buffers Write Page

More Pages ?

Reenable RWW
Section

END

Yes

No
7
1644D–AVR–1/03

Boot Loader
Example

The Boot Loader software presented in this application note uses AVRprog (available from
www.atmel.com) as the user interface. The example application implements functions to read
or update the Flash and EEPROM memories on the target device. It is also possible to read
and update the Lock bits and read the Fuse bits of the device.

Protocol The Boot Loader software presented in this application note uses AVRprog (available free
from www.atmel.com) as the user interface. The protocol used by the Boot Loader program is
the protocol defined for AVRprog, although the Boot Loader software does not support the
complete command set. A list of supported commands is shown in Table 2. All commands
start with a single letter. The programmer returns 13d (carriage return) or the requested data
after the command is finished. Unknown commands are replied with a “?”.

Table 2. AVRProg Commands

Host Writes Host Reads

ID Data Data

Enter Programming Mode “P” 13d

Auto Increment Address “a” dd

Set Address “A” ah al 13d

Write Program Memory, Low Byte “c” dd 13d

Write Program Memory, High Byte “C” dd 13d

Issue Page Write “m” 13d

Read Lock Bits “‘r” dd

Read Program Memory “R” dd
(dd)

Read Data Memory “d” dd

Write Data Memory “D” dd 13d

Chip Erase “e” 13d

Write Lock Bits “l” dd 13d

Write Fuse Bits “f” dd 13d

Read Fuse Bits “F” dd

Read High Fuse Bits “N” dd

Leave Programming Mode “L” 13d

Select Device Type “T” dd 13d

Read Signature Bytes “s” 3*dd

Return Supported Device Codes “t” n*dd 00d

Return Software Identifier “S” s[7]

Return Software Version “V” dd dd

Return Hardware Version “v” dd dd

Return Programmer Type “p” dd

Set LED “x” dd 13d

Clear LED “y” dd 13d
8 AVR109
1644D–AVR–1/03

AVR109
When AVRprog.exe is executed, it searches for any supported programmers on the available
COM ports. It uses 19.2 Kbps 8N1 (8 data bits, no parity bits and one stop bit) communication;
The receiving UART should for this reason be configured to match this speed and mode.

Assuming communication with an ATmega161, the sequence for determining programmer
type is as follows:

AVRprog :4 'ESC': flushing the UART buffers.

AVRprog :'S' to get software identifier

MegaAVR :'AVRB161' (boot loader). AVRprog accepts any string consisting of seven
characters starting with the three characters 'AVR'.

AVRprog :'a' to ask for auto address incrementing

megaAVR :'y' (Yes)

AVRprog :'t' to ask for supported devices?

megaAVR :'60' for mega161 and '00' to indicate end of list

AVRprog :'T' and '60' to tell programmer that ATmega161 is selected

AVRprog :'y' +dd 'y' +dd 'y' +dd 'x' +dd to activate LEDs.

The sequence for programming is as follows:

AVRprog :3 'ESC': flushing the UART buffers.

AVRprog :'T' and '60' to tell programmer that ATmega161 is selected

AVRprog :'P' to enable programming

AVRprog :'e' to erase application area

AVRprog :'P' to enable programming

AVRprog :'A' to set address=0x0000

AVRprog :'A' to set address to start programming from

AVRprog :'c' to send low data byte

AVRprog :'C' to send high data byte

When the temporary buffer is full:

AVRprog :'A' to set address of page

AVRprog :'m' to write page

Then programming continues with:

AVRprog :'c' to send low data byte

AVRprog :'C' to send high data byte

When all data is transferred:

AVRprog :'A' to set address of last page

AVRprog :'m' to write last page

AVRprog :'L' to leave programming mode
9
1644D–AVR–1/03

Data is then verified by executing the following sequence:

AVRprog :'P' to enable programming

AVRprog :'A' to set address

AVRprog :'R' to read program memory

ATmega161:two bytes containing program data.

AVRprog will continue sending “R” until all data is read and will finish the sequence by sending
“L” to leave Programming mode.

Program
Description

The main program starts by checking if programming is to be done, or if the program in the
Application code section is to be executed. In this application, this is indicated by the value of
PIND. If a user-specified pin on port D is held low during reset, the program will enter Pro-
gramming mode (the pin is specified in the main.c source code). If this pin is high, program
execution starts from address $0000 (as if an ordinary reset had occurred).

In Programming mode, the program receives commands from AVRprog via the UART. Each
command executes an associated task. This program does not use the LED commands but
they are implemented in order to prevent AVRprog from losing synchronization. Any command
not recognized by the boot loader program results in a “?” being sent back to AVRprog.

Main.c The main.c program handles communication with the host PC and executes the received com-
mands. Figure 7 shows a flowchart illustrating the operation.

Figure 7. Main Program Execution(1)

Note: 1. As shown in Figure 7, once the Boot Loader routine is entered, the only way to exit is
through a reset of the device.

Execute Program
in Application
Code Section.

Start

Init PORTD

PinD,x
Low?

Command
Received?

Valid
Command?

Execute Associated
Task.

Yes

No

No

No
10 AVR109
1644D–AVR–1/03

AVR109
Serial.c The UART routine (serial.c) implements simple polled UART routines. As described earlier,
the reason for doing this polled is that interrupts are not permitted in the Boot section for cer-
tain Boot Lock bit settings.

Assembly.s90 All routines using SPM are written in assembly. This is done in order to avoid conflicts in the
code. The SPM commands require data to be placed in both the Z-register (r31:r30) and in the
r1:r0 register pair. This could be done in C code, but writing in assembly simplifies the task of
controlling these register pairs and reduces overhead C code.

Calling the
Assembly
Routines

Two of the assembly routines have dual functions, depending on the second argument sent to
them:

void write_page (unsigned int addr, unsigned char function);

The first argument is the address of the page to write. The second argument indicates the
function to be performed. Function = 0x05 results in writing the page to program memory.
Function = 0x03 results in erasing the page.

unsigned int read_program_memory(unsigned int addr, unsigned char function);

In this routine, the first argument is the address of the page to be read. The second argument
indicates the function to be performed. If function = 0x00, the routine returns the program data
at the specified location. If function = 0x09 and address = 0x0000, 0x0001, or 0x0003, the rou-
tine returns the fuse, Lock Bits or the Fuse High bits, respectively. In this case, the main
program ignores the 8 MSB of the returned integer.

Below is a listing of the assembly part of the program.

NAME assembly(16)

RSEG CODE(0)

RSEG UDATA0(0)

PUBLIC fill_temp_buffer

PUBLIC write_page

PUBLIC write_lock_bits

PUBLIC read_program_memory

EXTERN ?CL0T_1_40_L08

RSEG CODE

#include "iom161.h"

write_page:

MOV R31,R17

MOV R30,R16 ; move address to z pointer (R31=ZH R30=ZL)

OUT SPMCR,R20 ; argument 2 decides function

SPM ; perform pagewrite

RET

fill_temp_buffer:

MOV R31,R21

MOV R30,R20 ; move address to z pointer (R31=ZH R30=ZL)

MOV R1,R17

MOV R0,R16 ; move data to reg 0 and 1
11
1644D–AVR–1/03

LDI R18,0x01

OUT SPMCR,R16

SPM ; Store program memory

RET

read_program_memory:

MOV R31,R17 ; R31=ZH R30=ZL

MOV R30,R16 ; move address to z pointer

SBRC R20,0 ; read lockbits? (second argument=0x09)

OUT SPMEN,R20 ; if so, place second argument in SPMEN register

LPM ; read LSB

MOV R16,R0

INC R30

LPM

MOV R17,R0 ; read MSB (ignored when reading lockbits)

RET

write_lock_bits:

MOV R0,R16

LDI R17,0x09

OUT SPMCR,R17

SPM ; write lockbits

RET

END

Special
Considerations

1. In the ATmega161and ATmega163, the Boot Loader section stretches from $3C00-
$3FFF, so the Linker File must be modified to place the program in these locations.
Change the “Program address space” line to:

// Program address space (internal Flash memory)

-Z(CODE)INTVEC,RCODE,CDATA0,CDATA1,CCSTR,SWITCH,
FLASH,CODE=3C00-3FFF

This will place the code in the appropriate Boot Block. In addition, the BOOTRST Fuse
must be programmed in order to move the Reset Vector to $1E00.

2. The Boot Loader program must have a way to determine whether to enter Program-
ming mode or run the program residing in the application code section.

This is implemented by doing a check to see if a specific I/O pin is held low during power-
up. If all pins are high, the Boot Loader program executes a software jump to address
$0000 and starts executing the application code. This jump can be implemented in C lan-
guage by defining a function pointer pointing to address $0000,

void (*funcptr)(void) = 0x0000; // Set up function pointer

and then execute the jump by calling this pointer:

funcptr();
12 AVR109
1644D–AVR–1/03

AVR109
3. If the pin is pulled low, Programming mode is entered. It is not possible to exit Pro-
gramming mode. To return to normal operation, the pin should be released and the
device reset. After a reset, the port is by default configured as an input with internal
pull-up disabled. The selected pin should be pulled high by an external pull-up resistor.

4. Depending on the state of the Boot Lock bits, interrupts may or may not be available
when executing instructions from the Flash Boot section. For this reason, the UART
routines implemented in this application note use polling instead of interrupts.

5. The SPM operations utilize the Z-register to indicate page address/temp buffer
address. This register is also used as a data pointer by the IAR C compiler. This
causes conflicts. All sequences dealing with SPM are therefore written in assembly,
thereby achieving full control over register use.

6. It takes overhead code to gain direct control over registers writing in C. This is also a
reason why all routines dealing with SPM are written in assembly.

7. The program is size optimized to 504 bytes, and will therefore fit in all parts that have a
Boot Loader section of 512 bytes or more.

In order to reduce the code size, a number of optimizations have been done:

– If, then, else if statements are used instead of case.

– For(;;) {} used instead of while(1){}.

– In the CSTARTUP.S90 file, all unused references have been deleted. That
includes all references to “__low_level_init”, all “#if #endif” statements and the
C_EXIT module.

– All variables are implemented using the smallest data type possible.

– Unsigned datatypes are used where this is possible.

Consult application note “AVR035: Efficient C Coding for AVR” for more details on efficient
C programming.
13
1644D–AVR–1/03

Printed on recycled paper.

© Atmel Corporation 2003.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.

Atmel Headquarters Atmel Operations

Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com

Web Site
http://www.atmel.com

1644D–AVR–1/03 0M

ATMEL® and AVR® are the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

	Features
	Introduction
	SPM Explained
	Memory Organization
	Read-While-Write Capabilities
	Using the SPM Instruction
	Page Erase
	Loading Page Buffer
	Page Write
	The RWW Section Busy Flag
	The Boot Lock Bits

	Interrupt Considerations
	The SPM Interrupt

	EEPROM Conflicts
	Typical Update Procedures

	Boot Loader Example
	Protocol
	Program Description
	Main.c
	Serial.c
	Assembly.s90
	Calling the Assembly Routines

	Special Considerations

