
 Object File Formats

Preliminary 5-1

Object File Formats

Generic file format
The Assembler can generate three different output file formats:
Generic, Motorola S-Records and Intel Intellec 8/MDS. The formats of
the latter two are assumed known. The Generic file format is a simple,
self defined format, where each line has the following format:

ADR:OPCODE

Where ADR is a 6 digit (24 bit) hexadecimal number and OPCODE is
a 4 digit (16 bit) hexadecimal number. ADR defines an address in the
Program memory, and OPCODE defines the contents of this address.

Example:
Given the following assembly file gen_demo.asm:

; Demonstration of the Generic file format

mov r0,r1
inc r1
call oursub

.org 0x50 ; Set Program space
; address to 50 (Hex)

oursub: add r1,r2; Do something
ret

Then the following output file gen_demo.rom will be produced:

000000:2c01
000001:9413
000002:940e
000003:0050
000050:0c12
000051:9508

Note that the two-word instructions (CALL and JMP) need two lines
of coding.

8-Bit

Assembler and

Simulator

5-2 Object File Formats Preliminary

If an EEPROM Segment has been defined, a file with extension ‘EEP’ is generated by the
Assembler. This EEPROM initialization file is also produced in the Generic format.

Object file format
The object file produced by the Assembler is also represented in a self defined format. The object file
contains debug information, and can be used together with the ATMEL AVR Simulator and the
ATMEL AVR In-Circuit Emulator.

The object file has a header section, a record section and a trailer section.

The header section has the following format:
• Offset to source file names (4 bytes)
• Offset to object records (4 bytes)
• Number of bytes in each record (1 byte)
• Number of file names stored in the Trailer (1 byte)
• The string “AVR Object File\0” (\0 means zero terminated)

The records are currently 9 bytes long. Each record has the following format:
• Program memory address (3 bytes)
• Opcode (2 bytes)
• Source file number of the instruction (1 byte, first file numbered 0)
• Line number in the source file (2 bytes, first file numbered 1)
• Macro indicator (1 byte, 1 if instruction is in a macro, 0 if not)

Finally, the trailer section has the following format:
• File names (Zero terminated, number of file names in header)
• ASCII 0

Example:
Given the following assembly file obj_demo.asm:

; Demonstration of the Object file format (obj_demo.asm)

.equ const1=0x15

.equ const2=0x40

.macro SWIN ; SWIN - swap and increment
swap @0
inc @0

.endmacro ; End macro

start: ldi r16,const1
SWIN r16 ; Call macro
ldi r16,const2
SWIN r16 ; Call macro

 Object File Formats

Preliminary 5-3

rjmp start

.include "delay.asm" ; Include another assembly file
; with the included file

; delay.asm:

; Include file, demonstration of the Object file format
; (delay.asm)

delay: dec r16 ; Decrement counter
breq delay ; If not zero branch to delay
ret ; Return from subroutine

Then the following output file obj_demo.obj would be produced (the file is a binary file which has
been converted into hexadecimal representation, the offset column and the line shifts are manually
inserted for reasons of clarity):

Offset: File contents (Hex representation):
00000000: 00000074 ← Offset to file names
00000004: 0000001A ← Offset to records
00000008: 09 ← #Bytes/record
00000009: 02 ← #File names
0000000A: 415652204F626A6563742046696C6500 ← AOF string
0000001A: 000000E10500000B00 ← First record
00000023: 000001950200000C01
0000002C: 000002950300000C01
00000035: 000003E40000000D00
0000003E: 000004950200000E01
00000047: 000005950300000E01
00000050: 000006CFF900000F00
00000059: 000007950A01000400
00000062: 000008F3F101000500
0000006B: 000009950801000600 ← Last record
00000074: 4F424A5F44454D4F2E41534D00 ← “OBJ_DEMO.ASM\0”
00000081: 44454C41592E41534D00 ← “DELAY.ASM\0”
0000008B: 00 ← End of object file

5-4 Object File Formats Preliminary

