

BASCOM LT

Language Reference

V 1.26

Copyright MCS Electronics(

�

MCS Electronics may update this documentation without notice.
Products specification and usage may change accordingly.

MCS Electronics will not be liable for any mis information or errors found in this document.

All software provided with this product package is provides ‘ AS IS’ without any warranty expressed or implied.

MCS Electronics will not be liable for any damages, costs or loss of profits arising from the usage of this product package.

No part of this document may be reproduced or transmitted in any form or by any means, Electronics or mechanical, including photocopying and recording, for any purpose without written permission of MCS Electronics.

copyright MCS Electronics. All rights reserved.

� Language Fundamentals

Characters from the BASCOM LT character set are put together to form labels, keywords, variables and operators.
These in turn combine to form statements that make up a program.

This chapter describes the character set and the format of BASCOM LT program lines. In particular, it discusses :

The specific characters in the character set and the special meanings of some characters.
The format of a line in a BASCOM LT program.
Line labels.
Program line length.

Character Set

The BASCOM LT BASIC character set consist of alphabetic characters, numeric characters, and special characters.

The alphabetic characters in BASCOM LT are the uppercase letters (A-Z) and lowercase letters (a-z) of the alphabet.

The BASCOM LT numeric characters are the digits 0-9.
The letters can be used as parts of hexadecimal numbers.
The following characters have special meanings in BASCOM LT statements and expressions:

Character	Name
ENTER		Terminates input of a line
		Blank (or space)
‘		Single quotation mark (apostrophe)
*		Asterisks (multiplication symbol)
+		Plus sign
,		Comma
-		Minus sign
.		Period (decimal point)
/		Slash (division symbol) will be handled as \
:		Colon
“		Double quotation mark
;		Semicolon
<		Less than
=		Equal sign (assignment symbol or relational operator)
>		Greater than
?		Question mark
\		Backslash (integer/word division symbol)

The BASCOM LT program line

BASCOM LT program lines have the following syntax:

[[line-identifier]] [[statement]] [[:statement]] ... [[comment]]

 �Using Line Identifiers

BASCOM LT support one type of line-identifier; alphanumeric line labels:

An alphabetic line label may be any combination of from 1 to 32 letters and digits, starting with a letter and ending with a colon.
BASCOM LT keywords are not permitted. The following are valid alphanumeric line labels:

Alpha:
ScreenSUB:
Test3A:

Case is not significant. The following line labels are equivalent:

alpha:
Alpha:
ALPHA:

Line labels may begin in any column, as long as they are the first characters other than blanks on the line. Blanks are not allowed between an alphabetic label and the colon following it.
A line can have only one label.

BASCOM LT Statements

A BASCOM LT statement is either “executable” or “non-executable”.
An executable statement advances the flow of a program’s logic by telling the program what tot do next.
Non executable statement perform tasks such as allocating storage for variables, declaring and defining variable types.

The following BASCOM LT statements are non-executable:

REM or ‘ (starts a comment)
DIM

A “comment” is a non-executable statement used to clarify a program’s operation and purpose.
A comment is introduced by the REM statement or a single quote character(‘).
The following lines are equivalent:

PRINT “Quantity remaining” : REM Print report label.
PRINT “Quantity remaining” ' Print report label.

More than one BASCOM LT statement can be placed on a line, but colons(:) must separate statements, as illustrated below.

FOR I = 1 TO 5 : PRINT “G’day, mate.” : NEXT I

BASCOM LT LineLength

If you enter your programs using the built-in editor, you are not limited to any line length, although it is advised to shorten your lines to 80 characters for clarity.
�Data Types

Every variable in BASCOM LT has a data type that determines what can be stored in the variable.
The next section summarizes the elementary data types.

Elementary Data Types

Bit (1/8 byte)
Integer (two bytes). �Integers are stored as signed sixteen-bit binary numbers ranging in value from -32,768 to +32,767.
Word (two bytes). �Words are stored as unsigned sixteen-bit binary numbers ranging in value from 0 to 65535.
Byte (1 byte). �Bytes are stores as unsigned 8-bit binary numbers ranging in value from 0 to 255.
String (up to 254 bytes). �Strings are stored as bytes and are terminated with a 0-byte.�A string dimensioned with a length of 10 bytes will occupy 11 bytes of external memory.
Long (4 bytes)�Bytes are stored a signed 32-bit binary numbers ranging in value from -2147483648 to 2147483647

Variables can be stored internal (default) or external.

Variables

A variable is a name that refers to an object--a particular number.

A numeric variable, can be assigned only a numeric value (either integer,word, byte or bit).
The following list shows some examples of variable assignments:

A constant value: �A = 5

The value of another numeric variable:�abc = def �k = g

The value obtained by combining other variables, constants, and operators: �Temp = a + 5�Temp = Asc(s) + 5

Variable Names

A BASCOM LT variable name may contain up to 32 characters.
The characters allowed in a variable name are letters and numbers.
The first character in a variable name must be a letter.

A variable name cannot be a reserved word, but embedded reserved words are allowed.
For example, the following statement is illegal because AND is a reserved word.

AND = 8

However, the following statement is legal:

ToAND = 8

Reserved words include all BASCOM LT commands, statements, function names, internal registers and operator names.

You can specify a hexadecimal of binary number with the prefix &H or &B.
a = &HA , a = &B1010 and a = 10 are all the same.

Before assigning a variable you must tell the compiler about it with the DIM statement.

Dim b1 As Bit, I as Integer, k as Byte , s As String * 10 , L as Long
Dim b2 as Xram Byte

You can also use DEFINT, DEFBIT, DEFBYTE and/or DEFWORD.
For example DEFINT c tells the compiler that all variables that are not dimensioned and that are beginning with the character c are of the Integer type.

Expressions and Operators

This chapter discusses how to combine, modify, compare, or get information about expressions by using the operators available in BASCOM LT.

Anytime you do a calculation you are using expressions and operators.
This chapter describes how expressions are formed and concludes by describing the following kind of operators:

Arithmetic operators, used to perform calculations.
Relational operators, used to compare numeric values.
Logical operators, used to test conditions or manipulate individual bits.
Functional operators, used to supplement simple operators.

Expressions and Operators

An expression can be a numeric constant, a variable, or a single value obtained by combining constants, variables, and other expressions with operators.

Operators perform mathematical or logical operations on values.
The operators provides by BASCOM LT can be divided into four categories, as follows:

Arithmetic
Relational
Logical
Functional

Arithmetic
Arithmetic operators are +, - , * and \.

Integer�Integer division is denoted by the backslash (\).�Example:	PRINT X\Y
Modulo Arithmetic�Modulo arithmetic is denoted by the modulus operator MOD.�Modulo arithmetic provides the remainder, rather than the quotient, of an integer division.�Example: 	X = 10 \ 4 : remainder = 10 MOD 4
Overflow and division by zero�Division by zero, produces an error.�At this moment there is no message, so you have to insure yourself that such won’t happen.
	

Relational Operators

Relational operators are used to compare two values as shown in the table below.
The result can be used to make a decision regarding program flow.

Operator�Relation Tested�Expression ��=�Equality�X = Y ��<>�Inequality�X <> Y ��<�Less than�X < Y ��>�Greater than�X > Y ��<=�Less than or equal to�X <= Y ��>=�Greater than or equal to�X >= Y��	

Logical Operators
Logical operators perform tests on relations, bit manipulations, or Boolean operators.
There are five operators in BASCOM LT, they are : 	

Operator�Meaning ��NOT�Logical complement ��AND�Conjunction ��OR�Disjunction ��XOR�Exclusive or ��
It is possible to use logical operators to test bytes for a particular bit pattern.
For example the AND operator can be used to mask all but one of the bits
of a status byte, while OR can be used to merge two bytes to create a particular binary value.

Example
A = 63 And 19
PRINT A
A = 10 Or 9
PRINT A

Output
16
11

�Compiler Limits

 There are some limitations to the compiler.
 You can perform only one calculation in a formula.

Good						False
a = a * b1 					a = a * b1 + c
a = Asc(s) + Len(s)

Limit�Number��Maximum allowed labels�500 ��Maximum allowed variable names�500 ��Maximum number of INTEGER/WORD variables�10* ��Maximum number of BYTE variables�20* ��Maximum number of BIT variables�126* ��Maximum number of STRING variables�up to available external memory��Maximum number of ALIAS statements�128��
*Depending on the used statements and the used variables of the other types.
The AT89C2051 has 128 bytes of internal RAM.
A maximum of 32 bytes are used internally for the registers, the PRINT & INPUT routines and the SETDATA & GETDATA routines.
The rest can be used by your program.

The stack uses some space too. So it depends on the used statements how much variables you can use.

8 used bit variables will use 1 byte;
1 used byte will use 1 byte;
1 used integer/word will use 2 bytes;
1 uses long will use 4 bytes;
1 string with a length of 10 bytes will use 11 bytes of memory.

Maximum nesting :

Operation�Max��FOR .. NEXT�50 ��IF .. THEN�50 ��DO .. LOOP�50 ��WHILE .. WEND�50 ��SELECT CASE�25��
�1WRESET,1WREAD,1WWRITE

Action
These routines can be used to communicate with Dallas Semiconductor's 1Wire-devices.

Syntax
1WRESET
1WWRITE var1
var2 = 1WREAD()

Remarks
1WRESET�Reset the 1WIRE bus.The errorvariable ERR will return 1 if a fault occurs.��1WWRITE var1�Sends the value of var1 to the bus. ��Var2 = 1WREAD()�Reads a byte from the bus and places it into var2.��

Example
'--
' 1WIRE.BAS
' demonstrates 1wreset, 1wwrite and 1wread()
' pullup of 4K7 required to VCC from P.1
' DS2401 serial button connected to P1.1
'--
Config 1wire = P1.1 'use this pin
Dim Ar(8) As Byte , A As Byte , I As Byte

1wreset 'reset the bus
Print Err 'print error 1 if error
1wwrite &H33 'read ROM command
For I = 1 To 8
 A = 1wread() 'read byte
 Ar(i) = A 'place into array
Next
For I = 1 To 8
 A = Ar(i) : Printhex A; 'print output
Next
Print 'linefeed
End

�$INCLUDE

Action
Includes an ASCII file in your program at the current position.

Syntax
$INCLUDE file

Remarks
file�ASCII file which must contain valid BASCOM LT statements.
This option can be used if you make use of the same routines in
many programs. You can write modules and include them into your program.
If there are changes to make you only have to change the module file, not all your BASCOM LT programs.
You can only include ASCII files!��

Example
$INCLUDE test.bas				'include this file at this position (ASCII)
$INCLUDE myasm.ASM			'include assembler file

�ALIAS

Action
Indicates that the variable can be referenced with another name.

Syntax
newar ALIAS, oldvar

Remarks
oldvar�Name of the variable such as P1.1��newvar�New name of the variable such as direction��
Aliasing port pins can give the pin names a more meaningful name.

See also

Example
direction ALIAS P1.1	'now you can refer to P1.1 with the variable direction
SET direction		'has the same effect as SET P1.1
END
�$BAUD

Action
Instruct the compiler that you want to use a different baud rate.

Syntax
$BAUD = var

Remarks
var�The baud rate that you want to use.��

When you want to use an unsupported crystal/baud rate you can use this meta command.
You must also use the $CRYSTAL meta command. These statements always work together.

In the generated report you can view which baud rate is actually generated.

See also
$CRYSTALCRYSTAL

Example
$BAUD = 2400
$CRYSTAL = 14000000		'14 MHz crystal
PRINT "Hello"
End

�$CRYSTAL

Action
Instruct the compiler which crystal frequency to use.

Syntax
$CRYSTAL = var

Remarks
var�Frequency of the crystal.��

When you want to use an unsupported crystal/baud rate you can use this meta command.
When you do you must also use the corresponding $BAUDRATE meta command.
These statements always work together.

See also
$BAUDBAUD

Example
$BAUD = 2400
$CRYSTAL = 14000000
PRINT "Hello"
End

�$large

Action
Instructs the compiler that LCALL statements must be used.

Syntax
$LARGE

Remarks
Internally when a subroutine is called the ACALL statement is used.
The ACALL instruction needs only 2 bytes(the LCALL needs 3 bytes)
The ACALL statement however can only address routines with a maximal offset of 2048. AT89C2051 chips will have no problems with that.

When code is generated for an other uP, the subroutine being called can be further away and you will receive an error. With the $LARGE statement you instruct the compiler to use the LCALL statement which can address the full 64K address space.

Example
$LARGE		'I received an error 148 so I need this option

�$lcd

Action
Instruct the compiler to generate code for 8-bit LCD-displays attached to the databus.

Syntax
$LCD = [&H]address

Remarks
address�The address where must be written to, to enable the LCD-display.
The db0-db7 lines of the LCD must be connected to the datalines D0-D7.
The RS line of the LCD must be connected to the address line A0.

On systems with external RAM/ROM it makes more sense to attach the LCD to the data bus. With an address decoder you can select the LCD-display.��

See also

CONFIG
LCDBUS

Example

CONFIG

LCDBUS = 8 'use 8-bit parallel databus mode(faster)

CONFIG LCDBUS = 4 'or use only d7-d4 (less wires)

$LCD = &HA000	'writing to this address will make the E-line of the
'LCD high.
�$NOBREAK

Action
Instruct the compiler that BREAK statements must not be compiled.

Syntax
$NOBREAK

Remarks
With the BREAK statement you can generate a reserved opcode that is used by the simulator to pause the simulation.
When you want to compile without these opcodes you don't have to remove the BREAK statement : you can use the $NOBREAK statement to achieve the same.

See also
BREAKBREAK

Example
$NOBREAK
BREAK		' this isn't compiled into code so the simulator will not pause
End

�$noinit� XE "$noinit" �

Action
Instruct the compiler that no initialization must be performed.

Syntax
$NOINIT

Remarks

BASCOM LT initializes the processor depending on the used statements.
When you want to handle this by yourself you can specify this with the meta statement $NOINIT.
The only initialization that is always done is the setting of the stack pointer and the initialization of the LCD-display (if statements are used).

See also

Example
$NONIT
.....
.....
End
�$NOSP

Action
Instruct the compiler that the stack pointer must not be set.

Syntax
$NOSP

Remarks
BASCOM LT initializes the processor depending on the used statements.
When you want to handle this by yourself you can specify this with the meta command $NOINIT.
The only initialization that is always done is the setting of the stack pointer and the initialization of the LCD-display (if LCD statements are used).
With the $NOSP meta command the stack will not be initialized either.

See also
$NOINITNOINIT

Example
$NOSP
$NOINIT
End

�$ramstart

Action
Specifies the location of the external RAM-memory.

Syntax
$RAMSTART = [&H]address

Remarks
address�The (hex)-address where the data is stored.

You can use this option when you want to run your code in systems with external RAM memory.��

Example
$ROMSTART = 4000�$RAMSTART = 0�$RAMSIZE = &H1000
�$RANGECHECK

Action
Instruct the compiler to perform a rangecheck when variables are assigned.

Syntax
$RANGECHECK

Remarks
When a variable is assigned to a variable of an other type, there is a possibility that the variable doesn't fit into the new variable.
You can for example assign an integer to a byte but the integer must be in the byte range (0-255). When you don't specify $rangecheck, no check will be performed to see if the integer fits in the byte. When you do specify $rangecheck, an additional check will be performed. When the variable doesn't fit into the new variable , the ERR variable will be set to 1.
Using $rangecheck will produce more code.

See also
-

Example
$rangecheck
CDim a As Byte, I as Integer
I = 1		'assign var
a = I		'ok for bytes, ERR will be 0
I = -1	'invalid for bytes
a = I		'will set ERR to 1
I = 256	'invalid for bytes
a = I		'will set ERR to 1
End
�$ramsize
Action
Specifies the size of the external RAM-memory.

Syntax
$RAMSIZE = [&H] size

Remarks
size�Size of external RAM memory chip.��

Example
$ROMSTART = 4000�$RAMSTART = 0�$RAMSIZE = $H1000�DIM x AS XRAM Byte		'specify XRAM to store variable in XRAM

�$romstart

Action
Specifies the location of the ROM-memory.

Syntax
$ROMSTART = [&H] address

Remarks
address�The (hex)-address where the code must start.
Default is 0. This value will be used when $ROMSTART is not specified.

You can use this option when you want to test the code in RAM.
The code must be downloaded at placed into the specified address and can be called from a monitor program.
The monitor program must relocate the interrupts to the correct address! When $ROMSTART = 4000 is specified the monitor program must perform a LJMP instruction. For address 3 this must be 4003. Otherwise interrupts can not be handled correctly. But that is up to the monitor program.

Note that a file named xxx.INF will be generated for the simulator to work correctly.
This file has the relocated address in it.��

Example
$ROMSTART = 4000

�$serialinput

Action
Specifies that serial input must be redirected.

Syntax
$SERIALINPUT = label

Remarks
label�The name of the assembler routine that must be called when an character is needed from the INPUT routine. The character must be returned in ACC.��
With the redirection of the INPUT command you can use your own routines.
This way you can use other devices as input-devices.�Note that the INPUT statement is terminated when a RETURN code(13) is received.

Example
$SERIALINPUT = Myinput�here goes your program�END
! myinput:�! ;perform the needed actions here�! mov a, sbuf ;serial input buffer to acc�! ret
�$serialoutput

Action
Specifies that serial output must be redirected.

Syntax
$SERIALOUTPUT = label

Remarks
label�The name of the assembler routine that must be called when a character is send to the serial buffer (SBUF).
The character is placed into ACC.��
With the redirection of the PRINT and other serial output related commands you can use your own routines.
This way you can use other devices as output-devices.�

Example
$SERIALOUTPUT = MyOutput�here goes your program�END
! myoutput:�! ;perform the needed actions here�! mov sbuf, a ;serial output buffer (default)�! ret
�$SIM

Action
Generates code without waiting loops for the simulator.

Syntax
$SIM

Remarks
You must remove the $SIM statement when you want to place your progam into a chip/EPROM.

See also
-

Example
$SIM			'don't make code for loops
WAIT 2		'the simulator
�abs()

Action
Returns the absolute value of a numeric variable.

Syntax
var = ABS(var2)

Remarks
var�Integer/Word or Long variable that is assigned the absolute value of var2.��Var2�Integer or Long variable.��
The absolute value of a number is always positive.

See also
-

Example
Dim a as Integer, c as Integer
a = -1000
c = Abs(a)
Print c
End

�asc ()

Action
Convert a string into its ASCII value.

Syntax
var = ASC(stringr)

Remarks
var�Byte,Integer/Word variable.��Var�String variable or constant.��
Note that only the first character of the string will be used.
When the string is empty, a zero will be returned.

See also
CHRCHR

Example
Dim a as byte, s as XRAM String * 10
s = "ABC"
a = Asc(s)
Print a
End
�bcd ()

Action
Convert a byte,integer/word variable or a constant to it’s BCD value.

Syntax
PRINT BCD(var)
LCD BCD(var)

Remarks
var�Byte,Integer/Word variable or numeric constant.��
When you want to use a I2C clock device which stores it’s values as BCD values you can use this function to print the value correctly.
BCD() will displays values with a trailing zero.

See also
-

Example
Dim a as byte
a = 65
LCD a
Lowerline
LCD BCD(a)
End
�bitwait

Action
Wait until a bit is set or reset.

Syntax
BITWAIT x SET/RESET

Remarks
x�Bit variable, internal register or P1.x or P3.x, where x ranges form 0-7.��
When using bit variables be sure that they are set/reset by software.
When you use internal registers that can be set/reset by hardware such as P1.0 this doesn’t apply.

See also
-

Example
Dim a as bit
BITWAIT a , SET		'wait until bit a is set
BITWAIT P1.7, RESET	'wait until bit 7 of Port 1 is 0.
End
�BREAK

Action
Generates a reserved opcode to pause the simulator.

Syntax
BREAK

Remarks
You can set a breakpoint in the simulator but you can also set breakpoint from code using the BREAK statement.
Be sure to remove the BREAK statements when you debugged your program or use the $NOBREAK meta command.

See also
$NOBREAKNOBREAK

Example
PRINT "Hello"
BREAK 		'the simulator will pause now
.....
.....
End

�call

Action
Call and execute a subroutine.

Syntax
CALL Test [(var1, var-n)]

Remarks
var1�Any BASCOM LT variable or constant..��var-n�Any BASCOM LT variable or constant.��Test�Name of the subroutine. In this case Test��

With the CALL statement you can call a procedure or sub routine.
As much as 10 parameters can be passed but you can also call a subroutine without parameters.
for examples : Call Test2
The call statement enables you to implement your own statements.

You don’t have to use the CALL statement :
Test2 ‘ will also call subroutine test2

When you don’t supply the CALL statement, you must leave out the parenthesis.
So Call Routine(x,y,z) must be written as Routine x,y,x

See also
DECLAREDECLARE, SUBSUB

Example
Dim a as byte, b as byte
Declare Sub Test(b1 as byte)
a = 65
Call test (a)		‘call test with parameter A
test a 		'alternative call without call statement
End

SUB Test(b1 as byte)	‘use the same variable as the declared one
 LCD b			‘put it on the LCD
 Lowerline		
 LCD BCD(b1)
End SUB

�chr()

Action
Convert a byte, Integer/Word variable or a constant to a character.

Syntax
PRINT CHR(var)
s = CHR(var)

Remarks
var�Byte, Integer/Word variable or numeric constant.��S�A string variable.��
When you want to print a character to the screen or the LCD-display,
you must convert it with the CHR() function.

See also
-

Example
Dim a as byte
a = 65
LCD a
Lowerline
LCDHEX a
LCD Chr(a)
End
�cls

Action
Clear the LCD-display and set the cursor home.

Syntax
CLS

Remarks
Clearing the LCD display does not clear the CG-RAM in which the custom characters are stored.

See also
-

Example
Cls
LCD "Hello"
End

�const

Action
Declares a symbolic constant.

Syntax
DIM symbol AS CONST value

Remarks
symbol�The name of the symbol.��Value�The value to assign to the symbol.��

Assigned constants consume no program memory.
The compiler will replace all occurrences of the symbol with the assigned value.

See also
DIMDIM

Example
DIM b1 as byte
DIM a AS CONST 5		‘assign 5 to symbolic name a
Print a
a = a + 1			‘THIS WILL RESULT In AN ERROR
b1 = a + 1			‘this is ok

�config TIMER0, TIMER1

Action
Configure TIMER0 or TIMER1.

Syntax
CONFIG TIMERx = COUNTER/TIMER , GATE=INTERNAL/EXTERNAL , MODE=0/3

CONFIG LCD = LCD type

Remarks
timerx�TIMER0 or TIMER1.
COUNTER will configure TIMERx as a COUNTER and TIMER will configure TIMERx as a TIMER.
A TIMER has built in clockinput and a COUNTER has external clockinput.��GATE�INTERNAL or EXTERNAL. Specify EXTERNAL to enable gate control with the INT input.��MODE�Time/counter mode 0-3. See Hardware for more details.�����LCD type�The type of LCD-display used. This can be
40 * 4, 16 * 1, 16 * 2, 16 * 4, 16 * 4, 20 * 2 or 20 * 4
Default 16 * 2 is assumed��

So CONFIG TIMER0 = COUNTER, GATE = INTERNAL, MODE=2 will configure TIMER0 as a COUNTER with not external gatecontrol , in mode 2 (auto reload)

When the timer/counter is configured the timer/counter is stopped so you must start it afterwards with the START TIMERx statement.

See microprocessor support for other statements that use the CONFIG statement.

Example
CONFIG TIMER0=COUNTER, MODE=1, GATE=INTERNAL
COUNTER0 = 0		‘reset counter 0
START COUNTER0		‘enable the counter to run
DELAY				‘wait a while
PRINT COUNTER0		‘print it
END
�CONFIG LCD

Action
Configure the LCD display.

Syntax
CONFIG LCD = LCDtype

Remarks
LCDtype�The type of LCD-display used. This can be :
40 * 4,16 * 1, 16 * 2, 16 * 4, 16 * 4, 20 * 2 or 20 * 4
Default 16 * 2 is assumed.��

Example
CONFIG LCD = 40 * 4
LCD "Hello"		'display on LCD
FOURTHLINE		'select line 4
LCD "4"		'display 4
END
�
CONFIG LCD
BUS

Action
Configure the LCD
-databus width
.

Syntax
CONFIG LCD
BUS
 = constant

Remarks

constant
�
8
 for 8-bit mode(default) Or use 4 for 4-bit databus mode.

4-bit mode only uses d7-d4.
��

This
 statement works together with the $LCD statement.

Example

$LCD = &H6000
 'parallel bus mode

CONFIG LCDBUS = 4 '4-bit mode

CONFIG LCD = 40 * 4
LCD "Hello"		'display on LCD
FOURTHLINE		'select line 4
LCD "4"		'display 4
END

�CONFIG BAUD

Action
Configure the uP to select the intern baudrate generator.
This baudrate generator is only available in the 80535, 80537 and compatible chips.

Syntax
CONFIG BAUD = baudrate

Remarks
baudrate�Baudrate to use : 4800 or 9600��

Example
CONFIG BAUD = 9600	'use internal baud generator
Print "Hello"
End
�CONFIG 1WIRE

Action
Configure the pin to use for 1WIRE statements.

Syntax
CONFIG 1WIRE = pin

Remarks
pin�The port pin to use such as P1.0��

See also
1WRESET , 1WREAD , 1WWRITEWIRE

Example
Config 1WIRE = P1.0	'P1.0 is used for the 1-wire bus
1WRESET			'reset the bus

�CONFIG SDA

Action
Overrides the SDA pin assignment from the Option Settings.

Syntax
CONFIG SDA = pin

Remarks
pin�The port pin to which the I2C-SDA line is connected.��
When you use different pins in different projects, you can use this statement to override the Options Compiler setting for the SDA pin. This way you will remember which pin you used because it is in your code and you do not have to change the settings from the options.

See also
CONFIG SCLHlp_CONFIG_SCL

Example
CONFIG SDA = P3.7		'P3.7 is the SDA line
�CONFIG SCL

Action
Overrides the SCL pin assignment from the Option Settings.

Syntax
CONFIG SCL = pin

Remarks
pin�The port pin to which the I2C-SCL line is connected.��
When you use different pins in different projects, you can use this statement to override the Options Compiler setting for the SCL pin. This way you will remember which pin you used because it is in your code and you do not have to change the settings from the options.

See also
CONFIG SDAHlp_CONFIG_SDA

Example
CONFIG SCL = P3.5		'P3.5 is the SCL line

�CONFIG DEBOUNCE

Action
Configures the delaytime for the DEBOUNCE statement.

Syntax
CONFIG DEBOUNCE = time

Remarks
time�A numeric constant which specifies the delaytime in mS.��
When the debounce time is not configured, 25 mS will be used as a default.
Note that the delaytime is based on a 12 MHz clockfrequency.

See also
DEBOUNCE

Example
Config Debounce = 25 mS		'25 mS is the default�CONFIG SPI

Action
Configure the pins to use for SPI statements.

Syntax
CONFIG SPI = soft , DIN = Pin, DOUT = Pin, CS = Pin, CLK = Pin

Remarks
pin�The port pin to use such as P1.0��soft�Some uP's support hardware SPI. At the moment there is only support for software SPI so you must specify soft.��

See also
SPIINITHlp_SPIINIT , SPIOUTHlp_SPIOUT

Example
Dim Ar(4) As Byte
CONFIG SPI = SOFT, DIN = P1.0, DOUT = P1.1, CS=P1.2, CLK = P1.3
SpiInit 'bring pins to good logic state
SPIOUT ar(1) , 4 'send 4 bytes
End

�CONFIG WATCHDOG

Action
Configures the watchdog timer from the AT89C8252

Syntax
CONFIG WATCHDOG = time

Remarks
time�The interval constant in mS the watchdogtimer will count to.
Possible settings :
16 , 32, 64 , 128 , 256 , 512 , 1024 and 2048.��
When the WD is started, a reset will occur after the specified number of mS.
With 2048, a reset will occur after 2 seconds, so you need to reset the WD in your programs periodically.

See also
START WATCHDOGHlp_AT898252_WATCHDOG , STOP WATCHDOGHlp_AT898252_WATCHDOG , RESET WATCHDOGHlp_AT898252_WATCHDOG

Example
'---
' (c) 1998 MCS Electronics
' WATCHD.BAS demonstrates the AT89S8252 watchdog timer
' select 89s8252.dat !!!
'---
Config Watchdog = 2048 'reset after 2048 mSec
Start Watchdog 'start the watchdog timer
Dim I As Word
For I = 1 To 10000
 Print I 'print value
 ' Reset Watchdog
 'you will notice that the for next doesnt finish because of the reset
 'when you unmark the RESET WATCHDOG statement it will finish because the
 'wd-timer is reset before it reaches 2048 msec
Next
End

�counterx

Action
Set or retrieve the COUNTER0 or COUNTER1 variable.

Syntax
COUNTER = var		or
 var = COUNTER

Remarks
var�A byte, Integer/Word variable or constant that is assigned to the counter/variable. ��
Use counter = 0 to reset the counter.
The counter can count from 0 to 255 in mode 2 (8-bit auto reload).
And to 65535 in mode 1(16-bit)

Example
CONFIG TIMER0=COUNTER, MODE=1, GATE=INTERNAL
COUNTER0 = 0		‘reset counter 0
START COUNTER0		‘enable the counter to run
DELAY				‘wait a while
PRINT COUNTER0		‘print it
END
�CPEEK()

Action
Returns a byte stored in code memory.

Syntax
var = CPEEK(address)

Remarks
var�Numeric variable that is assigned with the content of the program memory at address ��address�Numeric variable or constant with the address location��
There is no CPOKE statement because you can not write into program memory.

See also
PEEKPEEK , POKEPOKE , INPINP , OUTOUT

Example
'---
' (c) 1998 MCS Electronics
' PEEK.BAS
' demonstrates PEEk, POKE, CPEEK, INP and OUT
'
'---
Dim I As Integer , B1 As Byte

'dump internal memory
For I = 0 To 127 'for a 8052 225 could be used
' Break
 B1 = Peek(i) 'get byte from internal memory
 Printhex B1 ; " ";
 'Poke I , 1 'write a value into memory
Next
Print 'new line
'be careful when writing into internal memory !!

�cursor

Action
Set the LCD-cursor state.

Syntax
CURSOR ON / OFF BLINK / NOBLINK

Remarks
You can use both the ON or OFF and BLINK or NOBLINK parameters.
At power up the cursor state is ON and NOBLINK.

See also
-

Example
Dim a as byte
a = 255
LCD a
CURSOR OFF		'hide cursor
Wait 1
CURSOR BLINK	'blink cursor
End
�data

Action
Specifies values to be read by subsequent READ statements.

Syntax
DATA var [, varn]

Remarks
var�Numeric or string constant.��
Integer and Word values must end with the % sign.
A Long constant must end with the &-sign.

See also

Example
DIM a AS BYTE, I AS BYTE, S As String * 15, L as Long
RESTORE Dta1
FOR a = 1 TO 3
 READ a : PRINT a
NEXT
RESTORE Dta2
READ I : PRINT I
READ I : PRINT I
RESTORE Dta4
READ L : PRINT L
Restore Dta3: Read S: Print s; : Read S: Print S
END

DTA1:
DATA 5, 10, 100

DTA2:
DATA -1%, 1000% 	‘Integers and Words must end with the %-sign. (Integer : <0 or >255)

DTA3:
DATA "Hello" , "Word"

DTA4:
DATA 12345678&	‘A Long must end with the &-sign.
�DEBOUNCE

Action
Debounce a port pin connected to a switch.

Syntax
DEBOUNCE Px.y , state , label [, SUB]

Remarks
Px.y�A port pin like P1.0 , to examine.��State�0 for jumping when Px.y is low , 1 for jumping when Px.y is high��label�The label to GOTO when the specified state is detected��SUB�The label to GOSUB when the specified state is detected��
When you specify the optional parameter SUB, a GOSUB to label is performed.
The DEBOUNCE statements wait for a port pin to get high(1) or low(0).
When it does it waits 25 mS and checks again (eliminating bounce of a switch)
When the condition is still true and there was no branch before, it branches to the label.
When DEBOUNCE is executed again, the state of the switch must have gone beack in the original position before it can perform an other branch.
Each DEBOUNCE statement which use a different port uses 1 BIT of the internal memory to hold it's state.

See also
CONFIG DEBOUNCEHlp_CONFIG_DEBOUNCE

Example
'---
' DEBOUN.BAS
' demonstrates DEBOUNCE
'---
CONFIG DEBOUNCE = 30 'when the config statement is not used a default of 25mS will be used
Do
 'Debounce P1.1 , 1 , Pr 'try this for branching when high(1)
 Debounce P1.0 , 0 , Pr
 ' ^----- label to branch to
 ' ^---------- branch when P1.0 goes low(0)
 ' ^---------------- examine P1.0

 'when P1.0 goes low jump to subroutine Pr
 'P1.0 must go high again before it jumps again
 'to the label Pr when P1.0 is low
Loop
End

Pr:
 Print "P1.0 was/is low"
Return

�decR

Action
Decrements a variable by one.

Syntax
DECR var

Remarks
Var�An integer/Word or Byte variable.��
There are often situations where you want a number to be decreased by 1.
The DECR statement is faster then var = var - 1.

See also
INCRINC

Example
DO			‘start loop
	DECR a	‘decrement a by 1
	PRINT a	‘print a
LOOP UNTIL a > 10	‘repeat until a is greater than 10

�declare sub

Action
Declares a subroutine.

Syntax
DECLARE SUB TEST[(var as type)]

Remarks
test�Name of the procedure.��var�Name of the variable(s). Maximum 10 allowed.��type�Type of the variable(s). Bit, Byte,Word or Integer.��

You must declare each sub before writing the sub procedure.

See also
CALLCALL, SUBSUB

Example
Dim a as byte, b1 as byte, c as byte
Declare Sub Test(a as byte)
a = 1 : b1 = 2: c = 3

Print a ; b1 ; c

Call Test(b1)
Print a ;b1 ; c
End

Sub Test(a as byte)
 print a ; b1 ; c
End Sub
�defint, defbit, defbyte, defword

Action
Declares all variables that are not dimensioned of the DefXXX type.

Syntax
DEFBIT b
DEFBYTE c
DEFINT I
DEFWORD x

Example
Defbyte b : DefInt c 	‘default type for bit and integers
Set b1	‘set bit to 1
c = 10	‘let c = 10
�deflcdchar

Action
Define a custom LCD character.

Syntax
DEFLCDCHAR char,r1,r2,r3,r4,r5,r6,r7,r8

Remarks
char�Byte, Integer/Word variable or constant representing the character (0-7).��r1-r8�The row values for the character.��
You can use the LCD designer to build the characters.

See also
Edit LCD designer

Example
DefLCDchar 0,1,2,3,4,5,6,7,8	'define special character
LCD Chr(0)				'show the character
End

�delay

Action
Delay program execution for a short time.

Syntax
DELAY

Remarks
Use DELAY to wait for a short time.
The delay time is 100 microseconds based on a system frequency of 12 MHz.

See also
WAITWAIT

 Example
P1 = 5	‘write 5 to port 1
DELAY		‘wait for hardware to be ready
� dim

Action
Dimension a variable

Syntax
DIM var AS [XRAM] type

Remarks
var�Any valid variable name such as b1, i or longname. ��Type�Bit, Byte, Word/Integer or String��XRAM�Specify XRAM to store variable in external memory��
A string variable needs an additional length parameter : Dim s As XRAM String * 10
In this case the string can have a length of 10 characters.

See Also
CONSTCONST

Example
DIM b1 As Bit, c As Integer	‘dimension a bit and an integer
DIM s As XRAM String * 10	'length of string is 10
s = "Hello"
Set b1				‘set bit to 1
c = 10				‘let c = 10��DIM b2 As XRAM Byte		'use external memory too
�disable

Action
Disable specified interrupt.

Syntax
DISABLE interrupt

Remarks
Interrupt�INT0, INT1, SERIAL, TIMER0, TIMER1 or TIMER2.��

By default all interrupts are disabled.
To disable all interrupts specify INTERRUPTS.
To enable the enabling and disabling of individual interrupts use ENABLE INTERRUPTS.

See also
ENABLEENABLE

Example
ENABLE INTERRUPTS		‘enable the setting of interrupts
DISABLE SERIAL		‘disables the serial interrupt.
DISABLE INTERRUPTS	‘disable all interrupts

�display

Action
Turn LCD-display on or off.

Syntax
DISPLAY ON | OFF

Remarks
The display is turned on at power up.

See also
-

Example
Dim a as byte
a = 255		'assign variable
LCD a			'show on LCD
DISPLAY OFF		'turn display off
Wait 1		'wait 1 second
DISPLAY ON		'turn in back on
End

�do..loop

Action
Repeat a block of statements until condition is true.

Syntax
DO
 statements
LOOP [UNTIL expression]

Remarks
You can exit a DO..LOOP with the EXIT DO statement.

See also
EXITEXIT , WHILEWHILE_WEND WENDWHILE_WEND , FORFOR , NEXTNEXT

Example
DO				‘start the loop
 A = A + 1		‘increment A
 PRINT A			‘print it
LOOP UNTIL A = 10		‘Repeat loop until A = 10
 End
� else

Action
Executed if the IF-THEN expression is false.

Syntax
ELSE

Remarks
You don’t have to use the ELSE statement in an IF .. END IF structure.
You can use the ELSEIF statement to test for another condition.

IF a = 1 THEN
 ...
ELSEIF a = 2 THEN
..
ELSEIF b1 > a THEN
...
ELSE
...
END IF

See also
IFIF , END IFENDIF

Example
A = 10				‘let a = 10
IF A > 10 THEN			‘make a decision
	PRINT " A >10"		‘this will not be printed
ELSE					‘alternative
	PRINT "A not greater than 10"	‘this will be printed
END IF

�enable

Action
Enable specified interrupt.

Syntax
ENABLE interrupt

Remarks
Interrupt�INT0, INT1, SERIAL, TIMER0, TIMER1 or TIMER2.��

By default all interrupts are disabled.
To enable the enabling and disabling of interrupts use ENABLE INTERRUPTS.

See also
DISABLEDISABLE

Example
ENABLE INTERRUPTS
ENABLE TIMER1			‘enables the TIMER1 interrupt
�end

Action
Terminate program execution.

Syntax
END

Remarks
STOP can also be used to terminate a program.

When an END or STOP statement is encountered all interrupts are disabled and a never ending loop is generated.

See also
STOPSTOP

Example
PRINT "Hello"	‘print this
END			‘end program execution

�end if

Action
End an IF .. THEN structure.

Syntax
END IF or ENDIF

Remarks
You must always end an IF .. THEN structure with an END IF statement.
You can nest IF ..THEN statements.
The use of ELSE is optional.

The editor converts ENDIF to End If.

Example
Dim nmb As Byte
AGAIN:	‘label
INPUT "Number " , nmb	‘ask for number
IF a = 10 THEN	‘compare
 PRINT "Number is 10"	‘yes
ELSE		‘no
 IF nmb > 10 THEN	‘is it greater
 PRINT "Number > 10"	‘yes
 ELSE		‘no
 PRINT "Number < 10"	‘print this
 END IF	‘end structure
END IF		‘end structure
END		‘end program
 �ERASE

Action
Erases a variable so memory will be released.

Syntax
ERASE var

Remarks
var�The name of the variable to erase.��The variable must be dimensioned before you can erase it.

When you need temporary variables you can erase them after you used them. This way your program uses less memory.

You can only ERASE the last dimensioned variables. So when you DIM 2 variables for local purposes, you must ERASE these variables. The order in which you ERASE them doesn't matter.
For example :
Dim a1 as byte , a2 as byte , a3 as byte , a4 as byte
'use the vars
ERASE a3 : ERASE a4 	'erase the last 2 vars because they were temp vars
Dim a5 as Byte 'Dim new var
Now you can't erase the vars a1 and a2 anymore !

Note that ERASED variables don't show up in the report file nor in the simulator. (yet)

Example
DIM A As Byte		'DIM variable
A = 255			'assign value
Print A			'PRINT variable
ERASE A			'ERASE
DIM A AS INTEGER		'DIM again but now as INT
PRINT A			'PRINT again
REM Note that A uses the same space a the previous ERASED var A so
REM it still holds the value of the previous assigned variable
�
�exit

Action
Exit a FOR..NEXT, DO..LOOP , WHILE ..WEND or SUB..END SUB.

Syntax
EXIT [FOR] [DO] [WHILE] [SUB]

Remarks
With the EXIT ... statement you can exit a structure at any time.

Example
IF a >= b1 THEN			‘some silly code
	DO				‘begin a DO..LOOP
		A = A + 1		‘inc a
		IF A = 100 THEN	‘test for a = 100
			EXIT DO	‘exit the DO..LOOP
		END IF		‘end the IF..THEN
	LOOP				‘end the DO
END IF				‘end the IF..THEN
�for

Action
Execute a block of statements a number of times.

Syntax
FOR var = start TO/DOWNTO end [STEP value]

Remarks
var�The variable counter to use��start�The starting value of the variable var��end�The ending value of the variable var��value�The value var must be increased with each time NEXT is encountered.��
For incremental loops you must use TO.
For decremental loops you must use DOWNTO.
You must end a FOR structure with the NEXT statement.
The use of STEP is optional. By default 1 is used.

See also
NEXTNEXT , EXIT FOREXIT

Example
y = 10			‘make y 10
FOR a = 1 TO 10		‘do this 10 times
	FOR x = y TO 1	‘this one also
		PRINT x ; a	‘print the values
	NEXT			‘next x (count down)
NEXT				‘next a (count up)
END
�fourthline

Action
Reset LCD-cursor to the fourth line.

Syntax
FOURTHLINE

Remarks
Only valid for LCD-displays with 4 lines.

See also
-

Example
Dim a as byte
a = 255
LCD a
Fourthline
LCD a
Upperline
END
�GETAD
()

Action
Retrieves the analog value from channel 0-7.

Syntax
var = GETAD(channel, range)

Remarks
var�The variable that is assigned with the A/D value��channel�The channel to measure��range�The internal range selection.

0 = 0-5 Volt 8 = 0-2.5 Volt 128 = 2.5-5 Volt
4 = 0-1.25 Volt 72 = 1.25-2.5 Volt
140 = 2.5-3.75 Volt 12 = 3.75-5 Volt��Works only for the 80515 and compatibles.

See also

Example
Dim b1 as Byte, Channel as byte,ref as byte
channel=0 			'input at P6.0
ref=0 			'range from 0 to 5 Volt
b1=getad(channel,ref) 'place A/D into b1

�getdata
()

Action
Retrieve value from buffer.

Syntax
var = GETDATA(x)

Remarks
var�Receives the value from the buffer.��x�Place in the buffer where to retrieve the value from (1- 8).��
The compiler has an internal buffer of 8 bytes which you can use for general purpose.
For example you can fill the buffer and send the contents to an I2C device.

See also
SETDATASETDATA

Example
Dim a as byte
Setdata 1,12
a = Getdata(1)
Print a
End

�gosub

Action
Branch to and execute subroutine.

Syntax
GOSUB label

Remarks
label�The name of the label where to branch to.��
The routine must end with the RETURN statement.

See also
GOTOGOTO

Example
GOSUB Routine		'branch to routine
END				'terminate program
 Routine:			'this is a subroutine
	x = x + 2		'perform some math
	PRINT X		'print result
RETURN			'return
�goto

Action
Jump to the specified label.

Syntax
GOTO label

Remarks
Labels can be up to 32 characters long.
When you use duplicate labels, the compiler will give you a warning.

See also
GOSUBGOSUB

Example
Start:		‘a label must end with a semicolon
A = A + 1		‘increment a
IF A < 10 THEN	‘is it less than 10?
	GOTO Start	‘do it again
END IF		‘close IF
PRINT "Ready"	‘that’s it
�hexval()

Action
Convert string representing a hexadecimal number into a numeric variable.

Syntax
var = HEXVAL(x)

Remarks
var�The numeric variable that must be assigned.��X�The hexadecimal string that must be converted.��

See also
VALVAL

Example
Dim a as Integer, s as XRAM String * 15
s = "000A"
a = Hexval(s) : Print a
End
�home

Action
Place the cursor at the specified line at location 1.

Syntax
HOME UPPER / LOWER /THIRD / FOURTH

Remarks
If only HOME is used than the cursor will be set to the upperline.
You can also specify the first letter of the line like : HOME U

See also
-

Example
Lowerline
LCD "Hello"
Home Upper
LCD "Upper"
�i2creceive

Action
Receives data from an I2C serial device.

Syntax
I2CRECEIVE slave, var
I2CRECEIVE slave, DATA ,b2W, b2R

Remarks
slave�A byte, Word/Integer variable or number with the slave address from the I2C-device.��Var�A byte or integer/word variable that will receive the information from the I2C-device Use DATA to specify the DATA-buffer.
When you use DATA then b2W and b2R must be specified.��b2W�The number of bytes to write.
Be cautious not to specify too many bytes!��b2R�The number of bytes to receive.
Be cautious not to specify too many bytes!��

This command works only with some additional hardware. See appendix DAP_D.

See also
I2CSENDI2CSEND

Example
x = 0				‘reset variable
slave = &H40		‘slave address of a PCF 8574 I/O IC
I2CRECEIVE slave, x	‘get the value
PRINT x			‘print it

SETDATA 1,64		'fill data space
SETDATA 1,65
I2CRECEIVE slave, DATA, 2, 1	'send two bytes and receive one byte
x = GETDATA(1)			'print the received byte

�i2csend

Action
Send data to an I2C-device.

Syntax
I2CSEND slave, var
I2CSEND slave, DATA , bytes

Remarks
slave�The slave address off the I2C-device.��Var�A byte, integer/word or number thath holds the value which will be send to the I2C-device.
Specify DATA to specify that the value(s) will come from the DATA-space.
If you specify DATA then bytes must be specified.��Bytes�The number of bytes to send.
Be cautious not to specify too many bytes!
- Byte variable : bytes = 1
- Integer/word variable : bytes = 1
- DATA : 1-8��

This command works only with additional hardware. See appendix DAP_D.

See also
I2CRECEIVEI2CRECEIVE

Example
x = 5					‘assign variable to 5
slave = &H40			‘slave address of a PCF 8574 I/O IC
bytes = 1				‘send 1 byte
I2CSEND slave, x			‘send the value or
For a = 1 to 8
 x = Getdata(a)		'get variable from DATA-space
 I2CSEND slave,x
Next

or

For a = 1 to 8
 Setdata(a,a)		'Fill dataspace
Next
bytes = 8
I2CSEND slave,DATA,bytes
END
�I2START,I2CSTOP, I2CRBYTE, I2CWBYTE

Action
I2CSTART generates an I2C start condition.
I2CSTOP generates an I2C stop condition.
I2CRBYTE receives one byte from an I2C-device.
I2CWBYTE sends one byte to an I2C-device.

Syntax
I2CSTART
I2CSTOP
I2CRBYTE	var, 8/9
I2CWBYTE	val

Remarks
var�A byte or integer/word variable that receives the value from the I2C-device.��8/9�Specify 8 or ACK if there are more bytes to read. (ACK)
Specify 9 or NACK if it is the last byte to read. (NACK)��val�A byte, integer/word or constant to write to the I2C-device.��

This command works only with additional hardware. See appendix D.

These functions are provided as an addition to the I2CSEND and I2CRECEIVE functions.

See also
I2CRECEIVEI2CRECEIVE

Example
‘-------- Writing and reading a byte to an EEPROM 2404 -----------------
DIM a AS byte
DIM adresW AS CONST 174	‘write of 2404
DIM adresR AS CONST 175	‘read adres of 2404
I2CSTART			‘generate start
I2CWBYTE adresW		‘send slaveadres
I2CWBYTE 1			‘send adres of EEPROM
I2CWBYTE 3			‘send a value
I2CSTOP			‘generate stop
WaitMS 10			‘wait 10 mS because that is the time that the chip needs to write the data

‘----------------now read the value back into the var a --------------------
I2CSTART		‘generate start
I2CWBYTE adresW		‘write slaveadres
I2CWBYTE 1			‘write adres of EEPROM to read
I2CSTART			‘generate repeated start
I2CWBYTE adresR		‘write slaveadres of EEPROM
I2CRBYTE a,9		‘receive value into a. 9 means last byte to receive
I2CSTOP			‘generate stop
PRINT a			‘print received value
END
�IDLE

Action
Put the processor into the idle mode.

Syntax
IDLE

Remarks
In the idle mode the system clock is removed from the CPU but not from the interrupt logic, the serial port or the timers/counters.
The idle mode is terminated either when a interrupt is received or upon system reset through the RESET-pin.

See also
POWERDOWNPOWERDOWN

Example
IDLE

�if

Action
Allows conditional execution or branching, based on the evaluation of a Boolean expression.

Syntax
IF expression THEN

Remarks
expression�Any expression that evaluates to true or false.��

See also
ELSEELSE , END IFENDIF

Example
A = 10
IF A = 10 THEN					‘test expression
	PRINT "This part is executed."	‘this will be printed
ELSE
	PRINT "This will never be executed."	‘this not
END IF
�incR

Action
Increments a variable by one.

Syntax
INCR var

Remarks
Var�An integer/word or byte variable.��
There are often situations where you want a number to be increased by 1.
The INCR statement is faster then var = var + 1.

See also
DECRDEC

Example
DO			‘start loop
	INCR a	‘increment a by 1
	PRINT a	‘print a
LOOP UNTIL a > 10	‘repeat until a is greater than 10
�inkey

Action
Returns the ASCII value of the first character in the serial input buffer.

Syntax
var = INKEY

Remarks
var�Byte or integer/word variable. ��
If there is no character waiting, a zero will be returned.

The INKEY routine can be used when you have a RS-232 interface on your uP.
See the manual for a design of a RS-232 interface.
The RS-232 interface can be connected to a comport of your computer.

Example
DO				‘start loop
	A = INKEY		‘look for character
	IF A > 0 THEN	‘is variable > 0?
	 PRINT A		‘yes , so print it
	END IF
LOOP				‘loop forever
�inp
()

Action
Returns a byte read from a hardware port.

Syntax
var = INP(address)

Remarks
var�Byte or integer/word variable that receives the value.��Address�The address where to read the value from.��
The INP statement only works on systems with an uP that can address external
memory.

See also
OUTOUT

Example
Dim a as byte
a = INP(&H8000) 	'read value that is placed on databus(d0-d7) at
			'hex address 8000
PRINT a
END
�INPUTBIN

Action
Reads a binary stream of data from the serial port.

Syntax
INPUTBIN , var [, varn]

Remarks
Var,varn�A variable that will is assigned the received data.
The number of characters to receive depends on the variable type. A byte can store 1 character so when you specify a byte variable, programexecution will be continued when 1 byte is received. You can also use a string or an array.��

See also
PRINTBIN

Example
'--
' (c) 1997,1998 MCS Electronics
'--
'To use another baudrate and crystalfrequency use the
'metastatements $BAUD = and $CRYSTAL =
$baud = 1200 'try 1200 baud for example
$crystal = 12000000 '12 MHz

Dim V As Byte , B1 As Byte
Dim Ar(4) as Byte

Inputbin V , B1 , Ar(1)		 '2 + 4 characters to receive
Printbin Ar(1)			 'print it
End

�inputhex

Action
Allows input from the keyboard during program execution.

Syntax
INPUTHEX [“prompt”] , var [, varn] [NOECHO]

Remarks
prompt�An optional string constant printed before the prompt character. ��Var,varn�A numeric variable to accept the input value. ��NOECHO�Disables input echoed back to the COM-port.��
The INPUTHEX routine can be used when you have a RS-232 interface on your uP.
See the manual for a design of a RS-232 interface.
The RS-232 interface can be connected to a serial communication port of your computer.
This way you can use a terminal emulator and the keyboard as input device.
You can also use the build in terminal emulator.

If var is a byte then the input must be 2 characters long.
If var is an integer/word then the input must be 4 characters long.

See also
INPUTINPUT

Example
INPUTHEX “Enter a number “, x		‘ask for input

�input

Action
Allows input from the keyboard during program execution.

Syntax
INPUT [“prompt”] , var [, varn] [NOECHO]

Remarks
prompt�An optional string constant printed before the prompt character. ��Var,varn�A variable to accept the input value or a string.��NOECHO�Disables input echoed back to the COM-port.��

The INPUT routine can be used when you have a RS-232 interface on your uP.
See the manual for a design of a RS-232 interface.
The RS-232 interface can be connected to a serial communication port of your computer.
This way you can use a terminal emulator and the keyboard as an input device.
You can also use the build in terminal emulator.

See also
INPUTHEXINPUTHEX

Example
INPUT "Enter a number" , v	‘ask for input
PRINT v				‘print it
Dim s as XRAM string * 20
Input "Your name " , s
Print "Hello " ; s
End
�lcd

Action
Send constant or variable to LCD-display.

Syntax
LCD x

Remarks
x�Variable or constant to display.��
More variables can be displayed separated by the ; -sign
LCD a ; b1 ; “constant”

See also
LCDHEXLCDHEX

Example
Dim a as byte
a = 255
LCD “A = “ ; a
End

�lcdhex

Action
Send variable in hexadecimal format to the LCD-display.

Syntax
LCDHEX var

Remarks
var�Byte or Integer/Word variable.��
The same rules apply as PRINTHEX.

See also
LCDLCD

Example
Dim a as byte
a = 255
LCD a
Lowerline
LCDHEX a
End
�left()

Action
Return a specified number of leftmost characters in a string.

Syntax
var = Left(var1 , l)

Remarks
var�The string that is assigned. ��Var1�The sourcestring. ��l�The number of characters to get from the sourcestring. ��

Example
Dim s as XRAM String * 15, z as XRAM String * 15
s = “ABCDEFG”
z = Left(s,5)
Print z				'ABCDE
End
�load

Action
Load specified TIMER with a value.

Syntax
LOAD TIMER , value

Remarks
TIMER�TIMER0, or TIMER1. ��Value�The variable or value to load. ��
When you use the ON TIMERx statement with the TIMER in mode 2,
you can specify on which interval the interrupt must occur.
The value can range from 0 to 255 for TIMER0 and TIMER1.

See Additional hardwareAP_D for more details

Example
LOAD TIMER0, 100		‘ load TIMER0 with 100 (256-100)=156 will be stored �in order to reload after 100 counts.
�locate

Action
Moves the LCD cursor to the specified position.

Syntax
LOCATE y , x

Remarks
x�Constant or variable with the position. (1-64*)��y�Constant or variable with the line (1 - 4*)��

* depending on the used display

See also
CONFIG

Example
LCD “Hello”
Locate 1,10
LCD “*”
�LOOKUP
()

Action
Returns a byte from a table.

Syntax
var =LOOKUP(value, label)

Remarks
var�The byte returned��value�A byte value with the index of the table��label�The label where the data starts��

See also
LOOKUPSTRHlp_LOOKUPSTR

Example
DIM b1 As Byte
b1 = Lookup(1, dta)
Print b1		' Prints 2 (zero based)
End

DTA:
DATA 1,2,3,4,5

�LOOKUPSTR
()

Action
Returns a string from a table.

Syntax
var =LOOKUPSTR(value, label)

Remarks
var�The string returned��value�A byte value with the index of the table��label�The label where the data starts��

See also
LOOKUPLOOKUP

Example
Dim s as string, idx as Byte
idx = 0 : s = LookupStr(idx,Sdata)
Print s 'will print 'This'
End

Sdata:
Data "This" , "is" ,"a test"

�lowerline

Action
Reset the LCD-cursor to the lowerline.

Syntax
LOWERLINE

Remarks
-

See also
-

Example
Dim a as byte
LCD “Test”
LOWERLINE
LCD “Hello”
End
�makebcd()

Action
Convert a decimal byte or Integer/Word variable to it’s BCD value.

Syntax
var1 = MAKEBCD(var2)

Remarks
var1�Byte or Integer/Word variable that will receive the converted value.��var2�Byte or Integer/Word variable or numeric constant that holds the decimal value.��

When you want to use an I2C clock device which stores it’s values as BCD values you can use this function to convert variables from decimal to BCD.

See also
MAKEDECMAKEDEC

Example
Dim a as byte
a = 65
LCD a
Lowerline
LCD BCD(a)
a = MakeBCD(a)
LCD “ “ ; a
End
�makedec()

Action
Convert a BCD byte or Integer/Word variable to it’s DECIMAL value.

Syntax
var1 = MAKEDEC(var2)

Remarks
var1�Byte or Integer/Word variable that will receive the converted value.��var2�Byte or Integer/Word variable or numeric constant that holds the BCD value.��

When you want to use an I2C clock device which stores it’s values as BCD values you can use this function to convert variables from BCD to decimal.

See also
MAKEBCDMAKEBCD

Example
Dim a as byte
a = 65
LCD a
Lowerline
LCD BCD(a)
a = MakeDEC(a)
LCD “ “ ; a
End
�MAKEINT

Action
Convert 2 bytes 2 a Word/Integer.

Syntax
var1 = MAKEINT(var2, var3)

Remarks
var1�Integer/Word variable that will receive the converted value.��var2�A byte or numeric constant that holds the LSB.��var3�A byte or numeric constant that holds the MSB��

See also
MAKEBCDMAKEBCD , MAKEDECMAKEDEC

Example
Dim aL As Byte, aH as Byte, I as Integer
aL = 2 : aH = 1
I = MakeInt(aL, aH)
Print I '258
End

�mid()

Action
The MID function returns part of a string (a substring).
The MID statement replaces part of a string variable with another string.

Syntax
var = MID(var1 ,st [, l])
MID(var ,st [, l]) = var1

Remarks
var�The string that is assigned. ��Var1�The sourcestring. ��st�The starting position. ��l�The number of characters to get/set. ��

Example
Dim s as XRAM String * 15, z as XRAM String * 15
s = “ABCDEFG”
z = Mid(s,2,3)
Print z				‘BCD
z=”12345”
Mid(s,2,2) = z
Print s				‘A12DEFG
End

�mod

Action
Returns the remainder of a division.

Syntax
ret = var1 MOD var2

Remarks
ret�The variable that receives the remainder. ��var1�The variable to divide. ��var2�The divisor.��

Example
a = 10 MOD 3	‘divide 10 through 3
PRINT a		‘print remainder (1)

�next

Action
Ends a FOR..NEXT structure.

Syntax
NEXT [var]

Remarks
var�The index variable that is used as a counter when you form the structure with FOR var. ��

You must end each FOR statement with a NEXT statement.

See also
FORFOR

Example
y = 10				‘make y 10
FOR a = 1 TO 10			‘do this 10 times
	FOR x = y TO 1		‘this one also
		PRINT x ; a		‘print the values
	NEXT				‘next x (count down)
NEXT a				‘next a (count up) END

�on interrupt

Action
Execute subroutine when specified interrupt occurs.

Syntax
ON interrupt label

Remarks
interrupt�INT0, INT1, SERIAL, TIMER0 ,TIMER1 or TIMER2. ��label�The label to jump to if the interrupt occurs. ��
You must return from the interrupt routine with the RETURN statement.
You cannot use TIMER1 when you are using SERIAL routines such as PRINT
because TIMER1 is used as a BAUDRATE generator.

When you use the INT0 or INT1 interrupt you can specify on which condition the interrupt must be triggered.
You can use the Set/Reset statement in combination with the TCON-register for this purpose.

SET TCON.0 : trigger INT0 by falling edge.
RESET TCON.0 : trigger INT0 by low level.
SET TCON.2 : trigger INT1 by falling edge.
RESET TCON.2 : trigger INT1 by low level.

See HardwareAP_D for more details

Example
ENABLE INTERRUPTS
ENABLE INT0			‘enable the interrupt
ON INT0 Label2		‘jump to label2 on INT0
DO				‘endless loop
 LOOP
END
 Label2:
 PRINT “An hardware interrupt occurred!”		‘print message
RETURN
�on value

Action
Branch to one of several specified labels, depending on the value of a variable.

Syntax
ON var [GOTO] [GOSUB] label1, label2

Remarks
var�The variable to test. (Byte or integer/word).
This can also be a SFR such as P1.��label1, label2�The labels to jump to depending on the value of var.��
Note that the first value starts at 0. So when var = 0 the first specified label is jumped/branched.

Example
x = 2					‘assign a variable interrupt
ON x GOSUB lbl1, lbl2,lbl3	‘jump to label ‘lbl3’
END
lbl3:
 PRINT “lbl3”
RETURN
�out

Action
Sends a byte to a hardware port.

Syntax
OUT address, value

Remarks
address�The address where to send the byte to.��value�Byte, Integer/Word or constant to send.��
The OUT statement only works on systems with an uP that can address external
memory.

See also
INPINP

Example
Dim a as byte
OUT &H8000,1	 	'send 1 to the databus(d0-d7) at hex address 8000
END

�p1, p3

Action
P1 and P3 are special function registers that are treated as variables.

Syntax
Px = var
var = Px

Remarks
x�The number of the port. (1 or 3). P3.6 can’t be used with an AT89C2051! ��var�The variable to retrieve or to set. ��
Note that on other uP’s other ports can be available such as P0 and P2.

See hardware for a more detailed description of the ports.

Example
Dim a as BYTE, b1 as BIT
a = P1		‘get value from port 1
a = a OR 2		‘manipulate it
P1 = a		‘set port 1 with new value
P1 = &B10010101	‘use binary notation
P1 = &HAF		‘use hex notation	
b1 = P1.1		'read pin 1.1
P1.1 = 0		'set it to 0
�PEEK()

Action
Returns a byte stored in internal memory.

Syntax
var = PEEK(address)

Remarks
var�Numeric variable that is assigned with the content of the memory at address ��address�Numeric variable or constant with the address location.(0-255)��

See also
POKEPOKE , CPEEKCPEEK

Example
DIM a As Byte
a = Peek(0) 	'return the first byte of the internal memory (r0)
End
�POKE

Action
Sets a byte stored in internal memory.

Syntax
POKE address , value

Remarks
address�Numeric variable with the address of the memory location to set. (0-255)��value�Value to assign. (0-255)��
Be careful with the POKE statement because you can change registers with it which can cause your program to function incorrect.

See also
PEEKPEEK

Example
POKE 127, 1 		'write 1 to address 127
End

�powerdown

Action
Put processor into powerdown mode.

Syntax
POWERDOWN

Remarks
The powerdown mode stops the system clock completely.
The only way to reactivate the microcontroller is by system reset.

See also
IDLEIDLE

Example
POWERDOWN

�print

Action
Send output to the RS-232 port.

Syntax
PRINT var ; “constant”

Remarks
var�The variable or constant to print. ��
You can use a semicolon (;) to print more than one variable at one line.
When you end a line with a semicolon, no linefeed will be added.

The PRINT routine can be used when you have a RS-232 interface on your uP.
See the manual for a design of a RS-232 interface.
The RS-232 interface can be connected to a serial communication port of your computer.
This way you can use a terminal emulator as an output device.
You can also use the build in terminal emulator.

See also
PRINTHEXPRINTHEX

Example
PRINT x				'print the var
Print Chr(x) ; Bcd(x) 		'use conversion routines
�PRINTBIN

Action
Send the binary value of a variable to the RS-232 port.

Syntax
PRINTBIN var [; varn]

Remarks
var,varn�The variable to print. ��
You can use a semicolon (;) to print more variables.

See also
INPUTBINHlp_INPUTBIN

Example
'--
' (c) 1997,1998 MCS Electronics
'--
Dim A As Byte , Ar(4) As Byte
A = 1 : Ar(1) = 1
Printbin a ; ar(1)			 'send 1 + 4 characters 	
End

�printhex

Action
Sends a variable in hexadecimal format to the serial port.

Syntax
PRINTHEX var

Remarks
var�The variable to print. ��
The same rules apply to PRINTHEX as PRINT.

The PRINTHEX routine can be used when you have a RS-232 interface on your uP.
See the manual for a design of a RS-232 interface.
The RS-232 interface can be connected to a serial communication port of your computer.
This way you can use a terminal emulator as an output device.
You can also use the build in terminal emulator.

See also
PRINTPRINT

Example
INPUT x			‘ask for var
PRINT x			‘print it in decimal format
PRINTHEX x			‘print it in hex format
�priority

Action
Sets the priority level of the interrupts.

Syntax
PRIORITY [SET] [RESET] interrupt

Remarks
SET�Bring the priority level of the interrupt to a higher level.��RESET�Bring the priority level of the interrupt to a lower level.��Interrupt�The interrupt to set or reset.��
The interrupts are: INT0, INT1, SERIAL, TIMER0, TIMER1 and TIMER2.

Interrupt INT0 always has the highest priority.
When more interrupts occur at the same time the following order is used to handle the interrupts.

Interrupt�Priority��INT0�1 (highest)��TIMER0�2��INT1�3��TIMER1�4��SERIAL�5 (lowest)��

Example
PRIORITY SET SERIAL		‘serial int highest level
ENABLE SERIAL			‘enable serial int
ENABLE TIMER0			‘enable timer0 int
ENABLE INTERRUPTS			‘activate interrupt handler
ON SERIAL label			‘branch to label if serial int occur
DO ..					‘loop for ever
LOOP

Label:					‘start label
 PRINT “Serial int occurred.”	‘print message
RETURN					‘return from interrupt
�read

Action
Reads those values and assigns them to variables.

Syntax
READ var

Remarks
var�Variable that is assigned data value.��

See also

Example
Dim A As Byte, I As Byte, C As Integer, S As XRAM String * 10
RESTORE dta
FOR a = 1 TO 3
 READ i : PRINT i
NEXT
RESTORE DTA2
READ C : PRINT C
READ C : PRINT C
Restore dta3 : Read s : Print s

END

dta:
Data 5,10,15
dta2:
Data 1000%, -2000%
dta3:
Data “hello”
�rem

Action
Instruct the compiler that comment will follow.

Syntax
REM or ‘

Remarks
You can comment your program for clarity.
You can use REM or ‘ followed by your comment.
All statements after REM or ‘ are treated as comment so you cannot
use BASCOM LT statements after a REM statement.

Example
REM TEST.BAS version 1.00
PRINT a	` “this is comment : PRINT “hello” 	
			 ^--- this will not be executed!

�reset

Action
Reset a bit of a PORT (P1.x, P3.x) or a bit/byte variable.

Syntax
RESET bit
RESET byte.x

Remarks
bit�Can be a P1.x, P3.x or any bitvariable where x=0-7. ��byte�Can be any byte variable. ��x�Bit of variable (0-7) to reset. ��
You can also use the alternative syntax CLR.

See also
SETSET

Example
Dim b1 as bit, b2 as byte
RESET P1.3			‘reset bit 3 of port 1
RESET b1			‘bitvariable
RESET b2.0			‘rest bit 0 of bytevariable b2
CLR b2.0			'use alternative syntax
�restore

Action
Allows READ to reread values in specified DATA statements.

Syntax
RESTORE label

Remarks
label�The label of a DATA statement.��

See also

Example
DIM a AS BYTE, I AS BYTE
RESTORE dta
FOR a = 1 TO 3
 READ a : PRINT a
NEXT
RESTORE DTA2
READ I : PRINT I
READ I : PRINT I

END

DTA1:
Data 5, 10, 100

DTA2:
Data -1%, 1000%
‘Integers must end with the %-sign. (Integer : <0 or >255)

�return

Action
Return from a subroutine.

Syntax
RETURN

Remarks
You must end your subroutines with RETURN.
Interrupt subroutines must also be terminated with the Return statement.

See also
GOSUBGOSUB

Example
GOSUB Pr				‘jump to subroutine
PRINT result			‘print result
END					‘program ends

Pr:					‘start subroutine with label
	result = 5 * y		'do something stupid
 	result = result + 100	'add something to it
RETURN				‘return

�right()

Action
Return a specified number of rightmost characters in a string.

Syntax
var = RIGHT(var1 ,st [, l])

Remarks
var�The string that is assigned. ��Var1�The sourcestring. ��st�The starting position. ��L�The number of characters to get. ��

Example
Dim s as XRAM String * 15, z as XRAM String * 15
s = “ABCDEFG”
z = Right(s,2)
Print z				‘FG
End
�rotate

Action
Shifts all bits one place to the left or right.

Syntax
ROTATE var , LEFT/RIGHT

Remarks
var�Byte , Integer/Word or Long variable.��

See also
-

Example
Dim a as byte
a = 255
ROTATE a, LEFT
Print a
End
 �SELECT

Action
Executes one of several statement blocks depending on the value of an expression.

Syntax
SELECT CASE var
 CASE test1 : statements� CASE test2 : statements� CASE ELSE : statements�END SELECT

Remarks
var�Numeric or string variable. ��Test1�Value to test for. ��Test2�Value to test for. ��

See also
-

Example
Dim b2 as byte
SELECT CASE b2		'set bit 1 of port 1
 CASE 2 : PRINT "2"
 CASE 4 : PRINT "4"
 CASE IS >5 : PRINT ">5"	'a test requires the IS keyword
 CASE ELSE
END SELECT
END

�set

Action
Set a bit of a PORT(P1.x,P3.x) or a bit/byte variable.

Syntax
SET bit
SET byte.x

Remarks
bit�P1.x, P3.x or a Bitvariable. ��byte�Can be any byte variable. ��x�Bit of variable (0-7) to set. ��
You can also use the alternative syntax SETB.

See also
RESETRESET

Example
Dim b1 as Bit, b2 as byte
SET P1.1	'set bit 1 of port 1
SET b1	'bitvariable
SET b2.1	'set bit 1 of var b2
SETB b2.1	'use alternative syntax

�setdata

Action
Place byte in databuffer.

Syntax
SETDATA x , val

Remarks
x�Position in buffer (1-8).��val�Value to place in buffer. Can be constant a or variable.��

See also
-

Example
Dim a as byte
a = 255
Setdata 1,a
End
�shiftcursor

Action
Shift the cursor of the LCD-display left or right by one position.

Syntax
SHIFTCURSOR LEFT / RIGHT

Remarks
-

See also
-

Example
LCD “Hello”
SHIFTCURSOR LEFT
End

�shiftlcd

Action
Shift the LCD-display left or right by one position.

Syntax
SHIFTLCD LEFT / RIGHT

Remarks
-

See also
-

Example
LCD “Very long text”
SHIFTLCD LEFT
Wait 1
SHIFTLCD RIGHT
End
�sound

Action
Sends pulses to a port pin.

Syntax
SOUND pin, duration, frequency

Remarks
pin�Any I/O pin such as P1.0 etc.��duration�The number of pulses to send. Byte, integer/word or constant.
(1- 32768).��frequency�The time the pin is pulled low and high.��
When you connect a speaker of a buzzer to a port pin (see hardware) , you can use the SOUND statement to generate some tones.

The port pin is switched high and lower for frequency uS.
This loop is executed duration times.

See also
-

Example
SOUND P1.1 , 10000, 10		‘BEEP
End
�space ()

Action
Returns a string of spaces.

Syntax
var = SPACE(x)

Remarks
x�The number of spaces. ��Var�The string that is assigned. ��

Example
Dim s as XRAM String * 15, z as XRAM String * 15

s = Space(5)

Print “{“ ;s ; “}”				‘{ }
�
SPIIN

Action

Receives
 data
from
 the SPI bus.

Syntax

SPI
IN

var ,
bytes

Remarks

var
�
The variable
 which
will receive
the data
.��
B
ytes�Number of bytes to
receive
.��
See also
SPIINITHlp_SPIINIT

, SPIOUT

Example
Dim Ar(4) As Byte
CONFIG SPI = SOFT, DIN = P1.0, DOUT = P1.1, CS=P1.2, CLK = P1.3
SpiInit 'bring pins to good logic state
SPIOUT ar(1) , 4 'send 4 bytes

SPINI ar(1) , 2 'receive 2 bytes

End

�SPIINIT

Action
Initalizes the SPI pins.

Syntax
SPIINIT

Remarks
The SPI related pins must be in the correct logic state before SPIOUT can be used.
Normally you only have to use this statement once, but when you use the pins between two sessions, you must intialize them again.

See also
SPIOUTHlp_SPIOUT

Example
Dim Ar(4) As Byte
CONFIG SPI = SOFT, DIN = P1.0, DOUT = P1.1, CS=P1.2, CLK = P1.3
SpiInit 'bring pins to good logic state
SPIOUT ar(1) , 4 'send 4 bytes

�SPIOUT

Action
Sends data to the SPI bus.

Syntax
SPIOUT data , bytes

Remarks
data�Variable which holds the data to send.��bytes�Number of bytes to send.��
See also
SPIINITHlp_SPIINIT

Example
Dim Ar(4) As Byte
CONFIG SPI = SOFT, DIN = P1.0, DOUT = P1.1, CS=P1.2, CLK = P1.3
SpiInit 'bring pins to good logic state
SPIOUT ar(1) , 4 'send 4 bytes
End

�start

Action
Start the specified timer/counter.

Syntax
START timer

Remarks
timer�TIMER0, TIMER1, COUNTER0 or COUNTER1. ��
You must start a timer/counter in order for an interrupt to occur (when the external gate is disabled).
Of course the interrupt must be enabled too.

TIMER0 and COUNTER0 are the same.

See also
STOP TIMERx

Example
ON TIMER0 label2
ENABLE INTERRUPTS
LOAD TIMER0, 100
START TIMER0
DO			'start loop
LOOP			'loop forever

label2: 		'perform an action here

RETURN
�stop

Action
Stop program execution.

Syntax
STOP

Remarks
END can also be used to terminate a program.

When an END or STOP statement is encountered all interrupts are disabled and a never ending loop is generated.

Example
PRINT var		‘print something
STOP			‘thats it
�stop timer

Action
Stop the specified timer/counter.

Syntax
STOP timer

Remarks
timer�TIMER0, TIMER1, COUNTER0 or COUNTER1. ��
You can stop a timer when you don’t want an interrupt to occur.

TIMER0 and COUNTER0 are the same.

See also
START TIMERxSTART

Example
ON TIMER0 label2
LOAD TIMER0, 100
START TIMER0
DO				‘start loop
 IF INKEY = 27 then		‘escape
 STOP TIMER0
 END IF
 IF INKEY = 32 then		‘space
 START TIMER0
 END IF
 LOOP				‘loop forever

label2: ‘perform an action here

 RETURN

�str()

Action
Returns a string representation of a number.

Syntax
var = Str(x)

Remarks
var�A string variable.��X�A numeric variable such as Byte, Integer or Word.��

See also
VALVAL

Example
Dim a as Byte, S as XRAM String * 10
a = 123
s = Str(a)
Print s
End
�string()

Action
Returns a string of a specified length made up of a repeating character.

Syntax
var = STRING(char ,x)

Remarks
var�The string that is assigned. ��char�The character that is assigned to the string. ��x�The number of characters to assign. ��

Example
Dim s as XRAM String * 15, z as XRAM String * 15
s = String(65,5)
Print s				'AAAAA
End
�sub

Action
Defines a Sub procedure.

Syntax
SUB Name[(var1)]

Remarks
name�Can be any non reserved word.��var1�The name of the parameter.��
You must end each subroutine with the END SUB statement.

You must Declare Sub procedures before the SUB statement.
The parameter names and types must be the same in both the declaration and the Sub procedure.

Parameters are global to the application.
That is the used parameters must be dimensioned with the DIM statement.
As a result the variables can be used by the program and sub procedures.
The following examples will illustrate this :

Dim a as byte, b1 as byte, c as byte	‘dim used variables
Declare Sub Test(a as byte)		‘declare subroutine
a = 1 : b1 = 2: c = 3			‘assign variables

Print a ; b1 ; c				‘print them

Call Test(b1)				‘call subroutine
Print a ;b1 ; c				‘print variables again
End

Sub Test(a as byte)			‘begin procedure/subroutine
 print a ; b1 ; c			‘print variables
End Sub

See also
CALLCALL, DECLAREDECLARE

Example
-
�thirdline

Action
Reset LCD-cursor to the third line.

Syntax
THIRDLINE

Remarks
-

See also
-

Example
Dim a as byte
a = 255
LCD a
Thirdline
LCD a
Upperline
End

�upperline

Action
Reset LCD-cursor to the upperline.

Syntax
UPPERLINE

Remarks
-

See also
-

Example
Dim a as byte
a = 255
LCD a
Lowerline
LCD a
Upperline
End

�val()

Action
Converts a string representation of a number into a number.

Syntax
var = Val(s)

Remarks
var�Any numeric variable such as byte, integer or word. ��s�Variable of the string type. ��

See also
STRSTR

Example
Dim a as byte, s As XRAM string * 10
s = “123”
a = Val(s)		'convert string
Print a
End
�swap

Action
Exchange two variables of the same type.

Syntax
SWAP var1, var2

Remarks
var1�Any BASCOM LT variable. ��var2�Any BASCOM LT variable. ��
After the swap, var1 will hold the value of var2 and var2 will hold the value of var1.

Example
Dim a as integer,b1 as integer
a = 1 : b1 = 2		‘assign two integers
SWAP a, b1		‘swap them
PRINT a ; b1
�wait

Action
Suspends program execution for a given time.

Syntax
WAIT seconds

Remarks
seconds�The number of seconds to wait. ��
The delay time is based on a clockfrequency of 12 Mhz.
No accurate timing is possible with this command.
When you use interrupts the delay can be extended.

See also
DELAYDELAY

Example
WAIT 3		‘wait for three seconds
Print “*”
�waitKEY

Action
Wait until a character is received in the serial buffer.

Syntax
WAITKEY variable

Remarks
variable�The variable that receives the ASCII value of the character.��

See also
INKEYDELAY

Example
DIM a as Byte
WAITKEY a		‘wait for a key press
Print a
End
�waitms

Action
Suspends program execution for a given time in mS.

Syntax
WAITMS mS

Remarks
mS�The number of milliseconds to wait. (1-255)��
The delay time is based on a clock frequency of 12 Mhz.
No accurate timing is possible with this command.
Also the use of interrupts can slow down this routine.
This statement is provided for the I2C statements.
When you write to an EEPROM you must wait for 10 mS after the write instruction.

See also
DELAYDELAY WAITWAIT

Example
WAITMS 10		‘wait for 10 mS
Print “*”

�while..wend

Action
Executes a series of statements in a loop, as long as a given condition is true.

Syntax
WHILE condition
	statements
WEND

Remarks
If the condition is true then any intervening statements are executed until the WEND statement is encountered.
BASCOM LT then returns to the WHILE statement and checks condition.
If it is still true, the process is repeated.
If it is not true, execution resumes with the statement following the WEND statement.

See also
DO .. LOOPDO

Example
WHILE a <= 10
	PRINT a
INC a WEND
�Assembler commands� XE "Assembler commands" �

Assembler statements are recognized by the compiler.
The only exceptions are CLR, SETB, SWAP , INC and DEC because these are valid BASIC statements. You must be precede these ASM-statements with the !-sign in BASCOM LT so the compiler knows that they are ASM-statements.
You can also include an assembler file with the $INCLUDE FILE.ASM statements.

The build in assembler is based on the standard Intel mnemonics.
The following codes are used to describe the mnemonics:

Rn�working register R0-R7��direct�128 internal RAM locations, any IO port, control or status register.
For example : P1, P3, ACC��@Ri�indirect internal RAM location addressed by register R0 or R1��#data�8-bit constant included in instruction��#data16�16-bit constant included in instruction��bit�128 software flags, any IO pin, control or status bit
For example : ACC.0, P1.0, P1.1��

Boolean variable manipulation��CLR C�clear carry flag��CLR bit�clear direct bit��SETB C�set carry flag��SETB bit�set direct bit��CPL C�complement carry flag��CPL bit�complement direct bit��ANL C, bit�AND direct bit to carry flag��ORL C,bit�OR direct bit to carry flag��MOV C,bit�Move direct bit to carry flag��

Program and machine control��LCALL addr16�long subroutine call��RET�return from subroutine��RETI�return from interrupt��LJMP addr16�long jump��SJMP rel�short jump (relative address)��JMP @A+DPTR�jump indirect relative to the DPTR��JZ rel�jump if accu is zero��JNZ rel�jump if accu is not zero��JC rel�jump if carry flag is set��JNC rel�jump if carry flag is not set��JB bit,rel�jump if direct bit is set��JNB bit,rel�jump if direct bit is not set��JBC bit,rel�jump if direct bit is set & clear bit��CJNE A,direct,rel�compare direct to A & jump of not equal��CJNE A,#data,rel�comp. Immed. to A & jump if not equal��CJNE Rn,#data,rel�comp. Immed. to reg. & jump if not equal��CJNE @Ri,#data,rel�comp. Immed. to ind. & jump if not equal��DJNZ Rn,rel�decrement register & jump if not zero��DJNZ direct,rel�decrement direct & jump if not zero��NOP�no operation���
Arithmetic operations��ADD A,Rn�add register to accu��ADD A,direct�add register byte to accu��ADD A,@Ri�add indirect RAM to accu��ADD A,#data�add immediate data to accu��ADDC A,Rn�add register to accu with carry��ADDC A,direct�add direct byte to accu with carry flag��ADDC A,@Ri�add indirect RAM to accu with carry flag��ADDC A,#data�add immediate data to accu with carry flag��SUBB A,Rn�subtract register from A with borrow��SUBB A,direct�subtract direct byte from A with borrow��SUBB A,@Ri�subtract indirect RAM from A with borrow��SUBB A,#data�subtract immediate data from A with borrow��INC A�increment accumulator��INC Rn�increment register��INC direct�increment direct byte��INC@Ri�increment indirect RAM��DEC A�decrement accumulator��DEC Rn�decrement register��DEC direct�decrement direct byte��DEC@Ri�decrement indirect RAM��INC DPTR�increment datapointer��MUL AB�multiply A & B��DIV AB�divide A by B��DA A�decimal adjust accu���
Logical operations��ANL A,Rn�AND register to accu��ANL A,direct�AND direct byte to accu��ANL A,@Ri�AND indirect RAM to accu��ANL A,#data�AND immediate data to accu��ANL direct,A�AND accu to direct byte��ANL direct,#data�AND immediate data to direct byte��ORL A,Rn�OR register to accu��ORL A,direct�OR direct byte to accu��ORL A,@Ri�OR indirect RAM to accu��ORL A,#data�OR immediate data to accu��ORL direct,A�ORL accu to direct byte��ORL direct,#data�ORL immediate data to direct byte��XRL A,Rn�exclusive OR register to accu��XRL A,direct�exclusive OR direct byte to accu��XRL A,@Ri�exclusive OR indirect RAM to accu��XRL A,#data�exclusive OR immediate data to accu��XRL direct,A�exclusive OR accu to direct byte��XRL direct,#data�exclusive OR immediate data to direct byte��CLR A�clear accu��CPL A�complement accu��RL A�rotate accu left��RLC A�rotate A left through the carry flag��RR A�rotate accu right��RRC A�rotate accu right through the carry flag��SWAP A�swap nibbles within the accu��
Data transfer��MOV A,Rn�move register to accu��MOV A,direct�move direct byte to accu��MOV A,@Ri�move indirect RAM to accu��MOV A,#data�move immediate data to accu��MOV Rn,A�move accu to register��MOV Rn,direct�move direct byte to register��MOV Rn,#data�move immediate data to register��MOV direct,A�move accu to direct byte��MOV direct,Rn�move register to direct byte��MOV direct,direct�move direct byte to direct��MOV direct,@Ri�move indirect RAM to direct byte��MOV direct,#data�move immediate data to direct byte��MOV@Ri,A�move accu to indirect RAM��MOV@Ri,direct�move direct byte to indirect RAM��MOV@Ri,#data�move immediate to indirect RAM��MOV DPTR,#data16�load datapointer with a 16-bit constant��MOVC A,@A+DPTR�move code byte relative to DPTR to A��MOVC A,@A+PC�move code byte relative to PC to A��MOVX A,@Ri�move external RAM (8-bit) to A��MOVX A,@DPTR�move external; RAM (16 bit) to A��MOVX@Ri,A�move A to external RAM (8-bit)��MOVX@DPTR,A�move A to external RAM (16-bit)��PUSH direct�push direct byte onto stack��POP direct�pop direct byte from stack��XCH A,Rn�exchange register with accu��XCH A,direct�exchange direct byte with accu��XCH A,@Ri�exchange indirect RAM with A��XCHD A,@Ri�exchange low-order digit ind. RAM w. A��

How to access labels from ASM.

Each label in BASCOM is changed into a period followed by the label name.

Example :
GOTO Test
Test:			

generated ASM code:
LJMP .Test
.Test:

How variables are stored.

BIT varibles are stored in bytes. These bytes are stored from 20hex -2Fhex thus allowing 16 * 8 = 128 bit variables. You can access a bit variable as follows:

Dim var As Bit 	
'
dim variable

SETB
{
var
}
 	
; set bit

CLR {var}		; clear bit
Print var		; print value
End

BYTE variables are stored after the BIT variables.
Starting at address 20 hex + (used bytes for bit vars).

INTEGER/WORD variables are stored with the LSB at the lowest memory position.
Long variables are stored with the MSB at the lowest memory position.

You can access BYTE and INTEGER/WORD variables by surrounding the variable with {}.
To refer to the MSB of an Integer/Word use var+1.
To refer to the MSB of a Long use var (for LSB use var+3)
The following example shows how to access the variables from ASM

Dim t as Byte, c as Integer

CLR a			; clear register a

MOV {t} , a 		; clear variable t

INC {t}		; t=t + 1

MOV {c} , {t}		; c = t

MOV {c+0}, {t}		; LSB of C = t (you don’t have to enter the +0)

MOV {c+1}, {t}		; MSB of C = t

MOV {c},#10		; assign value

You can also change SFR’s from BASIC.
P1 = 12			‘this is obvious
ACC = 5		‘this is ok too
B = 3			‘B is a SFR too
!MUL AB		‘acc = acc * b
Print acc
�
EXTERNAL variables are stored similar.
Strings are stored with a terminating zero.

Example :

$RAMSTART = 0
Dim s As String * 10		‘reserve 10 bytes + 1 for string terminator
s = “abcde”			‘assign string constant to string

ram location 0 = “a”		‘first memory location
ram location 1 = “b”
ram location 2 = “c”
ram location 3 = “d”
ram location 4 = “e”
ram location 5 = #0

External variables must be accessed somewhat different.

Dim T as XRAM Byte

mov dptr,#
{
T
}
		; set datapointer

mov a,#65		; place A into acc

movx @dptr,a		; move to external memory
Print T			; print it from basic

Dim T1 as XRAM Integer

mov dptr,#
{
T1
}
		; set datapointer

mov a,#65		; place A into acc (LSB)

movx @dptr,a		; move to external memory

inc dptr	
	
	; move datapointer

mov a,#1		; 1 to MSB

movx @dptr,a		; move to external memory

Print T1			; print it from basic

�Memory usage

Some bytes are used by the internal assembler routines.
You can however use this memory locations when they are not needed by the assembler.

Used bitvariables
bit address�description��00hex�bit used for swap statement��01hex�bit used for integer/word display��02hex�bit used for uppercase conversion in combination with INPUTHEX��03hex�bit used for NOECHO in combination with INPUT��
Used bytevariables
bit address�description��08hex - 23hex�bytes used for input/output buffer��24hex - 31hex�bytes used for the I2C data buffer��
�Microprocessor support

Some microprocessors have extra futures compared to the AT89C2051/8051.

8032/8052/AT89S8252 TIMER2 support
TIMER2 is a 16-bit timer/counter which can operate as either an event timer or an event counter. TIMER2 has three main operating modes : capture, auto-reload(up or down counting) , and baud rate generator.

Capture mode

In the capture mode there are two options :
16-bit timer/counter which upon overflowing sets bit TF2, the TIMER2 overflow bit. This bit can be used to generate an interrupt.��Counter mode :�CONFIG TIMER2 = COUNTER, GATE = INTERNAL, MODE = 1 ��Timer mode:�CONFIG TIMER2=TIMER, GATE= INTERNAL,MODE =1�
As above but with the added future that a 1 to 0 transition on at external input T2EX causes the current values in the TIMER2 registers TL2 and TH2 to be captured into the capture registers RCAP2L and RCAP2H.��Counter mode:�CONFIG TIMER2 = COUNTER, GATE = EXTERNAL, MODE = 1��Timer mode:�CONFIG TIMER2=TIMER,GATE=EXTERNAL,MODE=1�
In addition the transition at T2EX causes bit EXF2 in T2CON to be set and EXF2 like TF2 can generate an interrupt.

The TIMER2 interrupt routine can interrogate TF2 and EXF2 to determine which event caused the interrupt.
(there is no reload value in this mode. Even when a capture event occurs from T2EX the counter keeps on counting T2EX pin transitions or osc/12 pulses)

Auto reload mode

In the 16-bit auto reload mode, TIMER2 can be configured as a timer or counter which can be programmed to count up or down. The counting direction is determined by bit DCEN.
TIMER2 will default to counting up to &HFFFF and sets the TF2 overflow flag bit upon overflow. This causes the TIMER2 registers to be reloaded with the 16-bit value in RCAP2L and RCAP2H.
The values in RCAP2L and RCAP2H are preset by software means.

Counter mode:
CONFIG TIMER2=COUNTER,GATE=INTERNAL,MODE=0��Timer mode:
CONFIG TIMER2=COUNTER,GATE=INTERNAL,MODE=0
�
If EXEN2=1 then a 16-bit reload can be triggered either by an overflow or by a 1 to 0 transition at input T2EX. This transition also sets the EXF2 bit. The TIMER2 interrupt, if enabled, can be generated when either TF2 or EXF2 are 1.

Counter mode:
CONFIG TIMER2=COUNTER,GATE=EXTERNAL,MODE=0

Timer mode:
CONFIG TIMER2=TIMER,GATE=EXTERNAL,MODE=0

TIMER2 can also count up or down. This mode allows pin T2EX to control the direction of count. When a logic 1 is applied at pin T2EX TIMER2 will count up. TIMER2 will overflow at &HFFFF and sets the TF2 flag, which can then generate an interrupt, if the interrupt is enabled. This timer overflow also causes the 16-bit value in RCAP2L en RCAP2H to be reloaded in to the timer registers TL2 and TH2.

Counter mode:
CONFIG TIMER2=COUNTER,GATE=INTERNAL/EXTERNAL,MODE=0,DIRECTION=UP

Timer mode:
CONFIG TIMER2=COUNTER,GATE=INTERNAL/EXTERNAL,MODE=0,DIRECTION=UP

A logic 0 applied at pin T2EX causes TIMER2 to count down. The timer will under flow when TL2 and TH2 become equal to the value stored in RCAP2L and RCAP2H. TIMER2 under flows sets the TF2 flag and causes &HFFFF to be reloaded into the timer registers TL2 and TH2.

Counter mode:
CONFIG TIMER2=COUNTER,GATE=INTERNAL/EXTERNAL,MODE=0,DIRECTION=DOWN

Timer mode:
CONFIG TIMER2=COUNTER,GATE=INTERNAL/EXTERNAL,MODE=0,DIRECTION=DOWN

The external flag TF2 toggles when TIMER2 under flows or overflows.
The EXF2 flag does not generate an interrupt in counter UP/DOWN mode.
� �
Baud rate generator

This mode can be used to generate a baud rate for the serial port. TIMER1 can be used for an other task this way.
CONFIG TIMER2=TIMER,GATE=INTERNAL,MODE=2

Receive only

This mode can be used to generate the baudrate for the receiver only.
TIMER1 can be used for the transmission with an other baudrate.
CONFIG TIMER2=TIMER,GATE=INTERNAL,MODE=3

Note that TIMER1 must be setup from assembler this way.

�Transmit only

This mode can be used to generate the baud rate for transmitter only.
TIMER1 can be used for the reception with an other baudrate.
CONFIG TIMER2=TIMER,GATE=INTERNAL,MODE=4

Note that TIMER1 must be setup from assembler this way.
Clock output

Some 8052 deviants have the ability to generate a 50% duty cycle clock on P1.0.
CONFIG TIMER2=TIMER,MODE=5

The output frequency = (fOSC / 4) / (65536-CAPTURE)

Use CAPTURE = value to set the capture register.

How to determine what caused the interrupt

You can test the bit T2CON.7 to see if a overflow caused the interrupt.
You can test bit T2CON.6 whether either a reload or capture is caused by a negative transition on T2EX.

Timer2_ISR:
If T2CON.7 = 1 Then
 Print “Timer overflowed”
Else
 If T2CON.6 = 1 Then
 Print “External transition”
 End if
End If
Return

Note that the flags are cleared automatically when the RETURN statement is encountered.
TIMER2
�AT89S8252 support
The AT89S8252 has 8K of flashROM and 2K of data flashROM.
It also has build in SPI and watchdog timer support.

The AT89S8252 has a build in watchdog timer.
A watchdog timer is a timer that will reset the uP when it reaches a certain value.
So during program execution this WD-timer must be reset before it exceeds its maximum value. This is used to be sure a program is running correct.
When a program crashes or sits in an endless loop it will not reset the WD-timer so an automatic reset will occur resulting in a restart.

CONFIG WATCHDOG = value

value�The time in mS it takes the WD will generate an interrupt.
Possible values are :
16,32,64,128,256,512,1024 or 2048��
START WATCHDOG will start the watchdog timer.
STOP WATCHDOG will stop the watchdog timer.
RESET WATCHDOG will reset the watchdog timer.

Example

DIM A AS INTEGER
CONFIG WATCHDOG = 2048		‘after 2 seconds a reset will occur
START WATCHDOG			‘start the WD
DO
 PRINT a
 a = a + 1				‘notice the reset
 REM RESET WATCHDOG		‘delete the REM to run properly
LOOP
END
�The AT89S8252 has a build in 2Kbytes flash EEPROM.
You can use this to store data.
Two statements are provided : WRITEEEPROM and READEEPROM.

WRITEEEPROM var [, address]

var�Any BASCOM LT variable name.��address�The address of the EEPROM where to write the data to.
Ranges from 0 to 2047.
When you omit the address the address will be assigned automatic. You can view the assigned address in the report file.��
READEEPROM var [, address]

var�Any BASCOM LT variable name.��address�The address of the EEPROM where to read the data from.
Ranges from 0 to 2047.
You can omit the address when you have written a value before with the WRITEEEPROM var statement.
Because in that case the compiler knows about the address because it is assigned by the compiler.��
Example

Dim S As String * 15 , S2 As String * 10
S = "Hello" : S2 = "test"

Dim L As Long
L = 12345678
Writeeeprom S
Writeeeprom S2		'write strings
Writeeeprom L			'write long

S = "" : S2 = "" : L = 0		'clear variables
Readeeprom L : Print L
Readeeprom S : Print S
Readeeprom S2 : Print S2
End

BASCOM LT Language Reference
�

�
Page � PAGE �
152
�

