
1

Netprog: LDAP 1

Lightweight Directory Access
Protocol (LDAP)

Refs:
–Netscape LDAP server docs
– U. of Michigan LDAP docs

– www.openldap.org docs
–RFCs: 1777, 1773, 1823, ...

Netprog: LDAP 2

Directory Services

• A "directory" service is a network
accessible database:
– Small amount of information in each

request/reply.

– Limited functionality (as compared to a
complete database system)

– Updates (changes) are much less frequent
than queries.

Netprog: LDAP 3

Directories

• Some typical examples include:
– telephone directories

– lists of addresses (email, network, P.O., etc)

• Each record is referenced by a unique key:
– given a name, look up a phone number

– given a name, look up an email address

2

Netprog: LDAP 4

Applications

• Some applications simply provide a
front-end to a directory service.
– Electronic phone book.

• Some applications use a directory
service to store configuration
information, auxiliary databases,etc.

Netprog: LDAP 5

Information Structure

• Typically, the information in a directory
is structured hierarchically (but it doesn't
have to be).

• The structure of the data (the hierarchy)
is often useful in finding data and
provides some (minimal) relationship
between records.

Netprog: LDAP 6

Example: DNS
The Domain Name System is an example

of a directory:
• hierarchical structure
• for each item there is a unique key (the

hostname) and a number of attributes:
– IP address

– Mail exchanger
– Host information
– etc...

3

Netprog: LDAP 7

X.500

• X.500 is a Directory Service that has
been used for a while:
– Based on O.S.I. Protocol Stack

• requires upper layers (above transport) of the
OSI Stack

– Heavyweight service (protocol).

Netprog: LDAP 8

LDAP

• A number of lightweight front-ends to
X.500 have been developed - the most
recent is LDAP:
– Lightweight Directory Access Protocol
– Based on TCP (but can be mapped to

other protocols).
– 90% of the functionality of X.500
– 10% of the cost

Netprog: LDAP 9

LDAP & U. of Michigan

• LDAP originated at the University of
Michigan.

• LDAP can be used as a front-end to
X.500 or stand-alone.

• LDAP is now available commercially
from a number of sources (including
Netscape)

4

Netprog: LDAP 10

LDAP definition

• RFC 1777:
– data representation scheme

– defined operations and mapping to
requests/response protocol.

• RFC 1823: Application Programming
Interface (has become a standard)

API provided – no sockets programming required!

Netprog: LDAP 11

LDAP Data Representation

• Each record has a unique key called a
distinguished name (dn for short).

• A distinguished name (RFC 1779) is
meant to be used by humans (not just
computers).

• Each dn is a sequence of components.
– Each component is a string containing an

attribute=value pair.

Netprog: LDAP 12

Example DN
CN=Dave Hollinger,

OU=Computer Science,
O=Rensselaer Polytechnic Institute,
C=US

Typically written all on one line.

5

Netprog: LDAP 13

Hierarchy

• Like Domain Names, the name can be
interpreted as part of a hierarchy.

• The last component of the dn is at the
highest level in the hierarchy.

CN=Joe Integral, OU=Math, O=RPI, C=US

Netprog: LDAP 14

Sample Hierarchy

C=US

O=RPIO=MIT

OU=Computer ScienceOU=Math

CN=Dave Hollinger

Netprog: LDAP 15

Component Names

• The components can be anything, but
there is a standard hierarchy used (for a
global LDAP namespace):

C country name
O organization name
OU organizational unit
CN common name
L locality name
ST state or province
STREET street address

6

Netprog: LDAP 16

Relative DNs

• Relative Distinguished Names are the
individual components of a
Distinguished Name (interpreted as
relative to some position in the
hierarchy).

• For example, the RDN "ou=Math" falls in
the hierarchy below "o=RPI, c=US".

Netprog: LDAP 17

DN usage

• A distinguished name is a key used to
access a record.

• Each record can contain multiple
attribute/value pairs. Examples of
attributes:
phone number email address
title home page
public key project 3 grade

Netprog: LDAP 18

ObjectClass

• A commonly used attribute is
"objectClass".

• Each record represents an object, and
the attributes associated with that object
are defined according to it's objectClass
– The value of the objectClass attribute.

7

Netprog: LDAP 19

Object Type examples

• Examples of objectClass:
– organization (needs a name and address)

– person (needs name, email, phone &
address)

– course (needs a CRN, instructor, mascot)
– cookie (needs name, cost & taste index)

Netprog: LDAP 20

Defining ObjectClass types

• You can define what attributes are
required for objects with a specific value
for the objectclass attribute.

• You can also define what attributes are
allowed.

• New records must adhere to these
settings!

Netprog: LDAP 21

Multiple Values
• Each attribute can have multiple values, for

example we could have the following record:

DN: cn=Dave Hollinger, O=RPI, C=US

CN: Dave Hollinger

CN: David Hollinger

Email: hollingd@cs.rpi.edu

Email: hollid2@rpi.edu

Email: satan@hackers.org

8

Netprog: LDAP 22

LDAP Services

• Add, Delete, Change entry

• Change entry name (dn).

• Searching (the primary operation)
– Search some portion of the directory for

entries that match some criteria.

Netprog: LDAP 23

Authentication

• LDAP authentication can be based on
simple passwords (cleartext) or
Kerberos.

• LDAP V3 includes support for other
authentication techniques including
reliance on public keys.

Netprog: LDAP 24

LDAP Requests

• bind/unbind (authentication)
• search
• modify

• add
• delete
• compare

9

Netprog: LDAP 25

LDAP Protocol Definition

• The protocol is defined in RFC 1777
using ASN.1 (abstract syntax notation)
and encoding is based on BER (Basic
Encoding Rules) - all very formal.

• All requests/responses are packaged in
an "envelope" (headers) and include a
messageID field.

Netprog: LDAP 26

Example - LDAP bind request
Bind request must be the first request.
BindRequest =

[Application 0] SEQUENCE {

version INTEGER (1…127),

name LDAPDN,

authentication CHOICE {

simple [0] OCTET STRING,

krbv42LDAP[1] OCTET STRING,

krbv42DSA [2] OCTET STRING

}

}

Netprog: LDAP 27

Other Requests

• Search/modify/delete/change requests
can include maximum time limits (and
size limits in the case of search).

• There can be multiple pending requests
(each with unique messageID).
– Asynchronous replies (each includes

messageID of request).

10

Netprog: LDAP 28

Search Request Parameters

base scope

size time

attributes attrsonly

search_filter

Netprog: LDAP 29

Search Parameter: Base
• The base is the DN of root of the

search.

• A server typically serves only below

some subtree of the global DN

namespace.

– You can ask the server to restrict the

search to a subtree of what it serves.

Netprog: LDAP 30

Search Parameter: Scope

• base – search only the base
element.

• onelevel – search all elements that
are children of the base.

• subtree – search everything in the
subtree base

11

Netprog: LDAP 31

Search Parameter: Time

Limit on number of seconds the

search can take.

Value of 0 means “no limit”.

Netprog: LDAP 32

Search Parameter: Size

Limit on the number of entries to
return from the search.

A value of 0 means no limit.

Netprog: LDAP 33

Search Parameter: Attributes

A list of attributes that should be
returned for each matched entry.

NULL mean “all attributes”

Attribute names are strings.

12

Netprog: LDAP 34

Search Parameter: Attrsonly

a flag that indicates whether values
should be returned
–TRUE: return both attributes and

values.
–FALSE: return just list of

attributes.

Netprog: LDAP 35

Search Parameter: Filter
a search filter that defines the

conditions that constitute a match.

Filters are text strings.

There is an entire RFC that
describes the syntax of LDAP
filters. (RFC 1558)

Netprog: LDAP 36

Search Filters

• Restrict the search to those records that
have specific attributes, or those whose
attributes have restricted values.

"objectclass=*" match all records
"cn=*dave*" matches any record with

"dave" in the value of cn

13

Netprog: LDAP 37

Complex Filters

• You can combine simple filters with
boolean &, | and !:
(&(cn=*da)(email=*hotmail*))

(&(!(age>=18))(drinks=yes))

(|(grade>=90)(cookies>10))

Netprog: LDAP 38

Search Reply
• Each search can generate a sequence

of Search Response records:
– Distinguished Name for record

– list of attributes, possibly with list of values
for each attribute.

– Result code

• LDAP includes an extensive error/status
reporting facility.

Netprog: LDAP 39

Other Requests/Responses

• The other requests and responses are
detailed in RFC1777.

• However, to write a client we don't need
to know the details of the protocol, there
is an API (RFC 1823) and library
available!

yippie!

14

Netprog: LDAP 40

LDAP API

• There are actually a couple of well-
established APIs:
– the original (RFC 1823) from U. of Michigan.

– Netscape has one.

• In both cases we are spared the details of the
protocol, we just call some subroutines.

• The socket stuff is handled for us.

Netprog: LDAP 41

Writing a client

1. Open connection with a server

2. Authenticate (or authentificate if you must).

3. Do some searches/modification/deletions.

4. Close the connection

Netprog: LDAP 42

Opening a connection

int ldap_bind(

LDAP *ld, connection handle

char *dn, who you are (your dn)

char *cred, your credentials

int method) which kind of authenticaton

return value is LDAP_SUCCESS on success or else
ldap_errno is set to indicate the error.

15

Netprog: LDAP 43

Simple bind
There are actually a bunch of ldap_bind functions, this is

the simplest:
int ldap_simple_bind(

LDAP *ld, connection handle

char *dn, who you are (your dis. name)

char *passwd) your ldap password

The sample LDAP server on monte.cs.rpi.edu is set up so
you don't need a password (or dn) to do anything. :

ldap_simple_bind(l,NULL,NULL);

Netprog: LDAP 44

Synchronous vs.
Asynchronous

• Synchronous calls all end in "_s"

ldap_simple_bind_s(l,NULL,NULL);

• Easier to use (returns the result right
away).

Netprog: LDAP 45

Simple Search Query

int ldap_search_s(

LDAP *ld, connection handle

char *base, dn of the base of the search

int scope, scope of the search

char *filter, search filter

char *attrs[], list of attributes to return

int attrsonly, flag - return no values?

LDAPMessage **res) result of query

16

Netprog: LDAP 46

Search Scope
• LDAP_SCOPE_BASE: search only the base

for a match.

• LDAP_SCOPE_ONELEVEL: search only one
level below the base.

• LDAP_SCOPE_SUBTREE: search the entire
subtree below the base.

Netprog: LDAP 47

Search Filters

• LDAP search filters are described in RFC
1960.
– attribute=value pairs with support for boolean

connectives and relational operators

• Examples:
"(objectclass=*)"

"(&(objectclass=Cookie)(tasteindex>=30))"

Netprog: LDAP 48

Example Search
ldap_search_s(l,

"course=Netprog, school=RPI",

LDAP_SCOPE_SUBTREE,

"(cn=Joe Student)", NULL,0,&mesg);

On success, mesg is a pointer to the result. To
access the records in the result you have to
use more of the LDAP library.

17

Netprog: LDAP 49

Search Results

The result is a list of records - you do
something like this to scan the list:

LDAPMessage *p; char *dn;

for (p=ldap_first_entry(l,msg);

p != NULL;

p=ldap_next_entry(l,p)) {

dn = ldap_get_dn(l,p);

printf("dn: %d\n",dn);

}

Netprog: LDAP 50

Attributes of each entry

• Extracting the attributes (and values)
from each entry is similar - step through
a list of attributes using:

ldap_first_attribute()

ldap_next_attribute()

• Example code in RFC 1823!!!

